linux系统查看gpu情况的三个命令:
watch -n 1 nvidia-smi (是nvidia-smi命令的扩展,即实时查看gpu情况,每1秒刷新一次)
nvidia-smi
gpustat (安装命令 pip/pip3 install gpustat)
单卡训练方式:
1. 在代码中指定gpu来训练模型
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
"cuda:0" 这部分的数字即gpu的序号。
然后,对于要放在这张卡的模型和数据:
model = Model().to(device)
inputs = b_x.to(device)
labels = b_y.to(device)
2. 在命令行(终端)中指定gpu来训练
在代码中只需要:
model = Model().cuda()
inputs = b_x.cuda()
labels = b_y.cuda()
在终端运行程序的命令:
CUDA_VISIBLE_DEVICES=0 python train.py # 0即gpu的序号 python train.py 是本来要运行的命令。
算了 再续着吧。。。。。
多卡训练方式:
import torch.nn
import os
os.environ[‘CUDA_VISIBLE_DEVICES’] = “2,3” # 只允许本程序使用的gpu序号
model=nn.DataParallel(model)