arxiV2020-Towards High Performance Human Keypoint Detection论文阅读

arxiV2020
论文地址
工程地址——没有代码,仅有一个视频
在这里插入图片描述

针对问题
(1)不可见关键点检测困难,如何利用多源环境信息有效建模来预测困难关键点?
(2)外部数据标注信息不一致,如何有效利用综合利用起来?
(3)关键点标注图像是高分辨率的,热图是低分辨率的,如何解决缩放不一致问题,提高定位准确率?
解决方法
(1)提出一种编码-解码网络
用于融合空间和信道信息,其中编码器采用Resnet,HRNet等,解码器采用提出的CCM,由3个串联的CM模块组成,每个CM模块由3个并行模块组成,分别是:一个残差分支(upsamplingx2-1x1 conv),一个信道信息提取分支(SE:1x1 conv(downsample)-1x1 conv-sigmoid(upsample)),一个合成空洞卷积分支(HDC:四个不同dilated rate的并行空洞卷积-Deconv/1x1 conv)
Loss函数:MSE+辅助loss进行中间监督
在这里插入图片描述
在这里插入图片描述
(2)数据增强
Hard-Ne

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值