牛客 剑指offer:最小编辑代价

题目:最小编辑代价

思路:动态规划。

leetcode类似的题目,三个操作的代价都是1,把问题抽象为三种情况:对a删除、对b删除、替换;而这道题三种操作的代价不同,而且只能对一个字符串修改,所以把问题抽象成:对a删除、对a插入、替换。转移方程如下:

  • 如果s1[i] == s2[j],则 dp[i][j] = dp[i - 1][j - 1]。即,如果当前字符相等,那么此时不需要额外操作;
  • 如果s1[i] != s2[j],则 dp[i][j] = Math.min(Math.min(dp[i][j - 1] + ic, dp[i - 1][j] + dc), dp[i - 1][j - 1] + rc)
    即,当前字符不相等,我们需要一步操作:
    dp[i][j - 1] + ic 表示在a中插入b[j]
    dp[i - 1][j] + dc 表示在a中删除a[i]
    dp[i - 1][j - 1] + rc 表示把a[i]替换为b[j]
    我们取三者最小。

代码:

import java.util.*;


public class Solution {
    /**
     * min edit cost
     * @param str1 string字符串 the string
     * @param str2 string字符串 the string
     * @param ic int整型 insert cost
     * @param dc int整型 delete cost
     * @param rc int整型 replace cost
     * @return int整型
     */
    public int minEditCost (String str1, String str2, int ic, int dc, int rc) {
        // write code here
        int len1 = str1.length();
        int len2 = str2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];
        dp[0][0] = 0;
        for (int i = 1;i <= len1; i++) {
            dp[i][0] = dp[i - 1][0] + dc;
        }
        for (int j = 1; j <= len2; j ++) {
            dp[0][j] = dp[0][j - 1] + ic;
        }
        for (int i = 1; i <= len1; i ++) {
            for (int j = 1; j <= len2; j ++) {
                if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else {
                    int temp1 = Math.min(dp[i][j - 1] + ic, dp[i - 1][j] + dc);
                    temp1 = Math.min(temp1, dp[i - 1][j - 1] + rc);
                    dp[i][j] = temp1;
                }
            }
        }
        return dp[len1][len2];

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值