题目:最小编辑代价
思路:动态规划。
leetcode类似的题目,三个操作的代价都是1,把问题抽象为三种情况:对a删除、对b删除、替换;而这道题三种操作的代价不同,而且只能对一个字符串修改,所以把问题抽象成:对a删除、对a插入、替换。转移方程如下:
- 如果
s1[i] == s2[j]
,则dp[i][j] = dp[i - 1][j - 1]
。即,如果当前字符相等,那么此时不需要额外操作; - 如果
s1[i] != s2[j]
,则dp[i][j] = Math.min(Math.min(dp[i][j - 1] + ic, dp[i - 1][j] + dc), dp[i - 1][j - 1] + rc)
。
即,当前字符不相等,我们需要一步操作:
dp[i][j - 1] + ic
表示在a
中插入b[j]
;
dp[i - 1][j] + dc
表示在a
中删除a[i]
;
dp[i - 1][j - 1] + rc
表示把a[i]
替换为b[j]
;
我们取三者最小。
代码:
import java.util.*;
public class Solution {
/**
* min edit cost
* @param str1 string字符串 the string
* @param str2 string字符串 the string
* @param ic int整型 insert cost
* @param dc int整型 delete cost
* @param rc int整型 replace cost
* @return int整型
*/
public int minEditCost (String str1, String str2, int ic, int dc, int rc) {
// write code here
int len1 = str1.length();
int len2 = str2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
dp[0][0] = 0;
for (int i = 1;i <= len1; i++) {
dp[i][0] = dp[i - 1][0] + dc;
}
for (int j = 1; j <= len2; j ++) {
dp[0][j] = dp[0][j - 1] + ic;
}
for (int i = 1; i <= len1; i ++) {
for (int j = 1; j <= len2; j ++) {
if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
int temp1 = Math.min(dp[i][j - 1] + ic, dp[i - 1][j] + dc);
temp1 = Math.min(temp1, dp[i - 1][j - 1] + rc);
dp[i][j] = temp1;
}
}
}
return dp[len1][len2];
}
}