目录
数据结构第一节 3-5
1.算法效率
1.1 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
1.2 算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般
是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算
机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计
算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
1.3 复杂度在校招中的考察
2.时间复杂度:是一个量级评估
比的是程序的循环次数,如果拿时间来衡量,一个程序在新旧机器上运行时间本身就不同,则无法再通过时间比较程序的循环次数
2.1 时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一
个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知
道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法
的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
++count;
}
}
for (int k = 0; k < 2 * N; ++k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
}
Func1 执行的基本操作次数 :
时间复杂度函数:F(N)=N²+2*N+10
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。
随着N的变大,后两项 2*N+10 对整个结果的影响变小
当N无限大的时候,后两项对结果的影响可以忽略不计,所以直接去掉:
大O渐进表示法: O(N^2)
估算
2.2 大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。例如下图
2、在修改后的运行次数函数中,只保留最高阶项。 ( 例:时间复杂度函数:F(N)=N*N+2*N+10——>大O渐进表示法: O(N^2) )
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数(N是无穷大时系数影响也不大)。得到的结果就是大O阶。如下图
————————————————————————————————分隔线
Func1 执行的基本操作次数 :
时间复杂度函数:F(N)=N*N+2*N+10
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N²)
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
——————————————————————————————————分隔线
2.3常见时间复杂度计算举例
实例1:
实例2:
实例3:
实例4:
实例5:
过程:
冒泡排序最坏情况:第一次比较了N-1次(就是循环了N-1次),第二次循环N-2次......最后一次比较了1次,加起来一共循环了
F(N) = (N-1)*N/2; 次
最好情况:本身是个有序数列,然后第一次比较N-1次,然后不进入 if (a[i-1] > a[i] ) ,exchange 还是0,
进入if (exchange ==0) ,然后break提跳出for循环,则就执行了F(N) = N-1 次
取最坏情况F(N) = (N-1)*N/2; 展开发现最高次项是N²/2,则省去其他项目和这一项的系数,取时间复杂度O(N²)
实例6:二分查找
N是数组长度,或字符串长度
过程:
int mid = begin + ((end-begin)>>1) ; 防溢出的写法:相当于(begin+end)/2
过程:这里end=n ,n是10个数,相当于end在数组的末尾,数组之外下一个空间的地址,相当于是左闭右开 [) ,所以条件设成beginn-1 , beginend , else if(a[mid] > x) end=mid-1 ;;;数组长度N,二分查找每找一次就相当于把数组折半,每找一次 = ×½ ,最后只剩1个元素,找完这1个元素就停止,这里是假设一共找了X次,N/(2/^X)=1,
2/^X=N,X=log2N,则一共找了这么多次,时间复杂度就是:O(log2N)
时间复杂度里面会把O(log2 N),简写成O(logN),
有些资料里面也会简写成O(lgN) ,但是这个是不太对,因为存在误区
实例7:递归
递归算法时间复杂度计算:
1、每次函数调用是O(1),那么就看他的递归次数
2、每次函数调用不是O(1),那么就看他的递归调用
中次数的累加
过程:Fac是第一种情况:一共调用的N次,所以是O(N)
过程:调用自身函数调用的N次,每次调用有一个if 是O(1),还有一个for O(N),所以整体时间复杂度是O(N*N)
实例8:斐波那契
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
} 时间复杂度O(2^N) 通过等比数列估算出来
过程:第1次调用2次,调用2个后这两个又调用4次,这4个调用8次,相当于一个三角形图从上往下,如果只看最左边, Fib(N)-> Fib(N-1)-> Fib(N-2)-> Fib(N-3)......-> Fib(2),所以一共有N-2+1=N-1层,第一层是调用2^0次,第二层调用2^1次,第三层是调用2^2次,......,第N-1层是调用2^(N-2)次,整个三角是完整的情况下就是一共2^0+2^1+2^2+2^3...+2^(N-2)= a1*(1-q^n) / 1-q =
1*(1-2^ (N-1) ) / 1-2=>2^N是最高次幂,但是这个三角实际不是完整的, Fib(N)= Fib(N-1) + Fib(N-2); 这个右边的 Fib(N-2) 会提前结束,所以如图三角右下边是空一部分的,也就是2^0+2^1+2^2+2^3...+2^(N-2) 再减一部分,但是当N是无限大的时候,这部分的影响也就可以忽略不计,所以说还是2^N是最高次幂,所以时间复杂度是O(2^N)
实例答案及分析:
1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
3. 实例3基本操作执行了10次,通过推导大O阶方法,时间复杂度为 O(1)
4. 实例4基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最
坏,时间复杂度为 O(N^2)
6. 实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底
数为2,对数为N。有些地方会写成lgN。(建议通过折纸查找的方式讲解logN是怎么计算出来的)
7. 实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。
8. 实例8通过计算分析发现基本操作递归了2^N次,时间复杂度为O(2^N)。(建议画图递归栈帧的二叉树
讲解)