算法导论程序40--贪心算法(活动选择问题)

一个调度竞争共享资源的多个活动的问题,目标是选出一个最大的互相兼容的活动集合。

假定有一个n个活动的集合S={a1,a2,...,an},这些活动使用同一个资源,而这个资源在某个时刻只能供一个活动使用。

每个活动ai都有一个开始时间si和一个结束时间fi。其中0=<si<fi<∞。如果被选中,任务ai发生在半开区间[si, fi)

如果两个活动ai和aj满足[si, fi)和[sj, fj)不重叠,则称它们是兼容的。


在活动选择问题中,我们希望选出一个最大兼容活动集。

贪心算法只需考虑一个选择(即贪心的选择),在做贪心选择时,子问题之一必是空的,因此,只留下一个非空子问题。


活动选择问题的最优子结构:

令Sij表示在ai结束之后开始,且在aj开始之前结束的那些活动的集合。假定我们希望求Sij的一个最大的相互兼容的活动子集。假定Aij就是这样一个子集,包含活动ak。

我们得到两个子问题:寻找Sik中的兼容活动(在ai结束之后开始且在ak开始之前结束的那些活动)以及寻找Skj中的兼容活动(在ak结束之后开始且在aj开始之前结束的那些活动)

Aij=Aik U {ak} U Akj

而且Sij中最大兼容任务子集|Aij|=|Aik|+|Akj|+1

这样刻画活动选择问题的最优子结构,意味着我们可以用动态规划方法求解活动选择问题。

如果用c[i, j]表示集合Sij的最优解的大小,则可得递归式:

c[i ,  j]=c[i, k]+c[k, j]+1


于是接下来可以设计带备忘机制的递归算法,或者使用自底向上法填写表项。但我们可能忽略了活动选择问题的另一个重要性质,而这一性质可以极大提高问题求解速度。

对于活动选择问题,什么是贪心选择?直观上,我们应该选择这样一个活动,选出它后剩下的资源应能被尽量多的其他任务所用,现在考虑可选的活动,其中必然有一个最先结束。因此,直觉告诉我们,应该选择S中最早结束的活动,因为它剩下的资源可供它之后尽量多的活动使用。(如果S中最早结束的活动有多个,我们可以选择其中任意一个)换句话说,由于活动已按结束时间单调递增顺序排序,贪心选择就是活动a1, 选择最早结束的活动并不是本问题唯一的贪心选择方法。

求解活动选择问题的算法不必像基于表格的动态规划算法那样自底向上进行计算,相反,可以自顶向下进行计算,选择一个活动方法最优解,然后,对剩余的子问题(包含与已选择的活动兼容的活动)进行求解。贪心算法通常都是这种自顶向下的设计:做出一个选择,然后求解剩下的那个子问题,而不是自底向上求解出很多子问题,然后再做出选择。


递归贪心算法:

def recursive_activity_selector(s,f,k,n):
    m=k+1
    while m<=n and s[m]<f[k]:
        m=m+1
    if m<=n:
        return str(m)+" "+str(recursive_activity_selector(s,f,m,n))
    else:
        return " "
运行:

>>> f=[0,4,5,6,7,9,9,10,11,12,14,16]
>>> s=[0,1,3,0,5,3,5,6,8,8,2,12]
>>> n=11
>>> k=0
>>> print(recursive_activity_selector(s,f,k,n))
1 4 8 11  


迭代贪心算法:

def greedy_activity_selector(s,f):
    n=len(s)-1
    A=[]
    A.append(1)
    k=1
    for m in range(2,n+1):
        if s[m]>=f[k]:
            A.append(m)
            k=m
    return A

运行:

>>> s=[0,1,3,0,5,3,5,6,8,8,2,12]
>>> f=[0,4,5,6,7,9,9,10,11,12,14,16]
>>> greedy_activity_selector(s,f)
[1, 4, 8, 11]
运行时间都是O(n)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值