Python图结构--邻接矩阵

图的另一种常见表示法就是邻接矩阵了。

会将每个节点可能的邻居位置排成一行(也就是一个数组,用于对应图中每一个节点),然后用某种值(如True或False)来表示相关节点是否为当前节点的邻居。

与之前一样,其最简单的形式也可以用嵌套list来实现。节点编号依然是从0到V-1。并且为了让矩阵具有更好的可读性,我们将会用1和0来充当所谓的真值(也可用True和False)


>>> a,b,c,d,e,f,g,h=range(8)
>>> N=[[0,1,1,1,1,1,0,0],#a
   [0,0,1,0,1,0,0,0],#b
   [0,0,0,1,0,0,0,0],#c
   [0,0,0,0,1,0,0,0],#d
   [0,0,0,0,0,1,0,0],#e
   [0,0,1,0,0,0,1,1],#f
   [0,0,0,0,0,1,0,1],#g
   [0,0,0,0,0,1,1,0]]#h
>>> N[a][b]
1
>>> sum(N[f])
3

无向图的邻接矩阵应该是一个对称矩阵。

对角线上的元素应该全为假。(图中没有环)

将邻接矩阵扩展成允许对边进行加权处理:在原来存储真值的地方直接存储相关的权值即可。例如,对于边(u,v)来说,我们只需要将N[u][v]处的True替换成w(u,v)即可、我们通常会将一些不存在的边的权值设置为无穷大。

对角线上的值依旧应该全为0,任何节点到自身的距离都应该始终为0。

>>> a,b,c,d,e,f,g,h=range(8)
>>> inf=float('inf')
>>> w=N=[[0,2,1,3,9,4,inf,inf],#a
   [inf,0,4,inf,3,inf,inf,inf],#b
   [inf,inf,0,8,inf,inf,inf,inf],#c
   [inf,inf,inf,0,7,inf,inf,inf],#d
   [inf,inf,inf,inf,0,5,inf,inf],#e
   [inf,inf,2,inf,inf,0,2,2],#f
   [inf,inf,inf,inf,inf,1,0,6],#g
   [inf,inf,inf,inf,inf,9,8,0]]#h
>>> w[a][b]
2
>>> w[c][e]<inf
False
>>> sum(1 for w in w[a] if w<inf)-1
5

始终记着一点:我们应该根据图的具体用处来选择相关的表示法。




©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页