UML知识总括

    UML统一建模语言,英文全称为Unified Modeling Language,是一种面向对象的建模语言,为软件开发的所有阶段提供模型化和可视化的支持。它不仅统一了Booch(Grady Booch提出的面向对象分析与设计方法OOAD)、Rumbaugh(James Rumbaugh提出的面向对象技术OMT)和Jacobson(Ivar Jacobson提出的面向对象软件工程方法学OOSE)的表示方法,而且对其作了进一步的发展,并最终统一为大众所接受的标准建模语言。

    上面一段是比较官方的解释UML的概念及由来。其实通俗的说UML是一个标准,是结合了OOAD、OMT、OOSE三种方法的标准。它是用来建立软件模型的工具,这种工具就好像是vb的开发环境,要想编程实现一个程序需要应用到vb语言一样,要想建立软件系统的模型采用UML。它提供了一种建立模型的语言,从各个角度对软件系统进行图形化的描述。我们拿服装设计做个比拟,一个服装设计师在设计服装之初,要对服装的样式进行构思和设计,并把服装设计图画到图纸上,然后经过多次样式的更改确定一种最适合的,最后设计师将服装的各种侧面图交给服装制作商实现服装的制造。软件的设计其实和服装的设计有相似之处,再设计软件时要用UML的九种图对软件进行全方位的描述,最后只需将这些描述交付给编码人员很快就能实现软件的生产。

    UML可以对软件开发的各个阶段进行辅助,但是我们不能总是将图画到纸上吧,那多麻烦呐,于是有几位大神为了偷懒开发了软件工具来辅助我们画UML图,现在比较主流的有三种:Rational Rose、Together、Microsoft Visio,这几种软件各有优缺点,喜欢用哪个都可以吧。

  一、UML总括图

         在UML中最主要的是图,模型元素和它们之间的关系构成了模型图,模型图又分为静态图和动态图两大类。

     UML规则规定了构造块的使用原则。

     UML公共机制通过为模型元素添加注释、修饰、规格说明,定义通用划分、扩展机制,使得UML更加易用、易理解。

    若干个模型图构成了UML视图,UML视图从不同角度描述了一个软件系统的体系结构,每一种视图说明了软件系统的一个侧面,将这些视图结合起来就构成了软件系统的完整模型

 



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值