SVM核函数的选择

SVM核函数的选择对于其性能的表现有至关重要的作用,尤其是针对那些线性不可分的数据,因此核函数的选择在SVM算法中就显得至关重要。对于核技巧我们知道,其目的是希望通过将输入空间内线性不可分的数据映射到一个高纬的特征空间内使得数据在特征空间内是可分的,我们定义这种映射为ϕ(x)ϕ(x),那么我们就可以把求解约束最优化问题变为


但是由于从输入空间到特征空间的这种映射会使得维度发生爆炸式的增长,因此上述约束问题中内积ϕi⋅ϕjϕi⋅ϕj的运算会非常的大以至于无法承受,因此通常我们会构造一个核函数

从而避免了在特征空间内的运算,只需要在输入空间内就可以进行特征空间的内积运算。通过上面的描述我们知道要想构造核函数κκ,我们首先要确定输入空间到特征空间的映射,但是如果想要知道输入空间到映射空间的映射,我们需要明确输入空间内数据的分布情况,但大多数情况下,我们并不知道自己所处理的数据的具体分布,故一般很难构造出完全符合输入空间的核函数,因此我们常用如下几种常用的核函数来代替自己构造核函数:

  • 线性核函数 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值