CV
文章平均质量分 70
简单点1024
熟悉ML,DM过程,参与ETL架构搭建,进行BI分析,热爱新技术
展开
-
R-CNN&SPPNet
一。RCNN:1、首先通过选择性搜索,对待检测的图片进行搜索出2000个候选窗口。2、把这2k个候选窗口的图片都缩放到227*227,然后分别输入CNN中,每个候选窗台提取出一个特征向量,也就是说利用CNN进行提取特征向量。3、把上面每个候选窗口的对应特征向量,利用SVM算法进行分类识别。可以看到R-CNN计算量肯定很大,因为2k个候选窗口都要输入到CNN中,分别进行特征提取,计算原创 2017-09-10 11:51:56 · 261 阅读 · 1 评论 -
物体检测网络概述
YOLO:实时快速目标检测 https://zhuanlan.zhihu.com/p/25045711?refer=shanren7 YOLO详解 https://zhuanlan.zhihu.com/p/25236464 传统目标检测系统采用deformable parts models (DPM)方法,通过滑动框方法提出目标区域,然后采用分类器来实现识别。近期的R-CNN类方法采用reg转载 2017-09-10 14:21:14 · 659 阅读 · 1 评论 -
Detection物体检测及分类方法总结(RFCN/SSD/RCNN/FastRCNN/FasterRCNN/SPPNet/DPM/OverFeat/YOLO)
Detection物体检测及分类方法总结(RFCN/SSD/RCNN/FastRCNN/FasterRCNN/SPPNet/DPM/OverFeat/YOLO)2017-01-03 16:43 3983人阅读 评论(1)收藏举报分类: ML/DL/AI/VR/DM(35) 作者同类文章X版权声明:本文为转载 2017-09-12 11:51:15 · 825 阅读 · 0 评论 -
多线程下载图片
"""import os, multiprocessingimport urllib3, certifiimport pandas as pdimport numpy as npdef DownloadImage(key_url): try: (key, url, out_dir) = key_url.values[0] filename = os...原创 2018-04-25 07:43:48 · 335 阅读 · 0 评论