多类分类(Multi-label classification)性能评价之宏平均(macro-average)与微平均(micro-average)

通常,我们在评价classifier的性能时使用的是accuracy

考虑在多类分类的背景下

accuracy = (分类正确的样本个数) / (分类的所有样本个数)

这样做其实看上去也挺不错的,不过可能会出现一个很严重的问题:例如某一个不透明的袋子里面装了1000台手机,其中有600台iphone6, 300台galaxy s6, 50台华为mate7,50台mx4(当然,这些信息分类器是不知道的。。。)。如果分类器只是简单的把所有的手机都预测为iphone6, 那么通过上面的公式计算的准确率accuracy为0.6,看起来还不错;可是三星,华为和小米的全部预测错了。如果再给一个袋子,里面装着600台galaxy s6, 300台mx4, 50台华为mate7,50台iphone,那这个分类器立马就爆炸了,连回家带孩子的要求都达不到

所以,仅仅用accuracy来衡量一个分类器的性能是很不科学的

为此,引入了宏平均(micro-average)的概念

介绍宏平均之前,还要介绍几个概念:

(1)precision(准确率,查准率)

(2)recall(召回率,查全率)

(3)F-measure

文字性的概念我就不水,我从符号上来表示一下吧:

多类分类问题中,分类结果一般有4种情况:

 

  • 属于类C的样本被正确分类到类C,记这一类样本数为 TP
  • 不属于类C的样本被错误分类到类C,记这一类样本数为 FN
  • 属于类别C的样本被错误分类到类C的其他类,记这一类样本数为 TN
  • 不属于类别C的样本被正确分类到了类别C的其他类,记这一类样本数为 FP                     

 

从字面意思上来说,某一类别C的准确率(查准率)可以理解为预测该类样本的准确性:

precision = TP / (TP + FN) 

这里很好理解, TP+FN实际上就是分类器在分类时,预测为类别C的样本个数

而某一个类别C的召回率(查全率)可以理解为,你预测正确的类别C的样本对于样本集中类别C的样本的覆盖程度,如果完全覆盖,那么recall就是100%

recall = TP / (TP + TN)

这里的TP+TN表示样本集中,真实类标为C的样本的个数

单一的用recall或者precision来评价分类器也是不合理的,譬如文章开头说到的那个简单的classifier

我们通过公式可以惊奇的发现在两个样本集上的recall都是100%,这是因为所有的iphone6样本,分类器都可以把它预测对,但是准确率就大不相同了;在第一个数据集上的准确率precision为0.6,但是第二个样本集上的准确率只有可怜的0.05;对于第二个样本集的结果,我可以说classifier很好,因为recall很高,也可以说classifier不好,因为precision很低。不过很明显,这些说法都是不合理的;综合考虑两种指标才是直观的比较可靠的指标。

现在就引入F-measure,计算公式如下

F- measure = (A + 1) * precision * recall / (A ^ 2 * precision + recall)

(不知道怎么写公式,就直接用文字写的,感觉有点挫)

如果A取1,那么F-measure实际上就是precison和recall的调和平均值2*precision*recall / (precision + recall), 此时的F-measure就称为F1值

把这些概念说了, 就回到刚才的宏平均的计算

把所有类的F1值取一个算术平均就得到了Macro-average

微平均Micro-average=(TP + FP) / (TP + TN + FP + FN)

分母就是输入分类器的预测样本个数,分子就是预测正确的样本个数(无论类别)

微平均实际上就是在文章开头说的accuracy

 

写到这里就差不多了,最后以一个例子来收尾把

考虑现在输入分类器的样本有10个,他们属于类别A B C

假设这10个样本的真实类标为(有序)和分类器预测的类标分别是: 

真实:A A A C B C A B B C

预测:A A C B A C A C B C

precision= (test 交 train)/test

recall=(test 交 train)/train

 

precision(A) = 3(正确预测为A类的样本个数为3) / 4(预测为A类的样本数为4) = 0.75  recall(A) = 3 / 4(真实A类样本有4个) = 0.75  

precision(B) = 1 / 2 = 0.5   recall(B) = 1 / 3 = 0.3333

precision(C) = 2 / 3 = 0.6667  recall(C) = 2 / 3 = 0.6667

F值计算出来之后,取算术平均就是Macro-average

Micro-average = 6(预测正确的样本个数) / 10 = 0.6

 

宏平均比微平均更合理,但也不是说微平均一无是处,具体使用哪种评测机制,还是要取决于数据集中样本分布

### 多分类问题中的 ROC 和 AUC 在多分类问题中,传统的二分类 ROC 曲线和 AUC 需要扩展到多个类别上。通常的做法是通过一对多(One-vs-Rest, OvR)或一对一(One-vs-One, OvO)策略来处理多分类问题。 #### One-vs-Rest (OvR) 方法 在这种方法下,每个类别的样本被标记为正类,而其他所有类别的样本则被视为负类。这样可以构建 \( C \) 条独立的 ROC 曲线(\( C \) 是类别总数)。每条曲线对应于一个特定类别的性能表现[^1]。 对于每一类,计算其对应的 TPR(True Positive Rate)和 FPR(False Positive Rate),并绘制相应的 ROC 曲线。最终可以通过平均这些单类别的 AUC 值得到整体的 AUC 表现: \[ AUC_{macro} = \frac{1}{C} \sum_{i=1}^{C} AUC_i \] 其中,\( AUC_i \) 表示第 \( i \) 类别下的 AUC 值[^2]。 #### Micro 平均Micro 平均法则是在全局范围内统计真正例数(TP)、假正例数(FP)和真反例数(TN),从而统一计算整个数据集上的 TPR 和 FPR。这种方法不区分具体类别,而是将所有预测结果汇总在一起进行分析。这种方式更适合关注总体错误率的应用场景[^3]。 以下是基于 Python 的 `scikit-learn` 实现多分类 ROC-AUC 的代码示例: ```python from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, auc, roc_auc_score import matplotlib.pyplot as plt from itertools import cycle import numpy as np # 创建模拟数据集 X, y = make_classification(n_samples=1000, n_classes=3, n_informative=3, random_state=42) # 将标签转换为 one-hot 编码形式 y_bin = label_binarize(y, classes=[0, 1, 2]) n_classes = y_bin.shape[1] # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y_bin, test_size=.5, random_state=42) # 使用逻辑回归作为基础分类器 classifier = OneVsRestClassifier(LogisticRegression()) y_score = classifier.fit(X_train, y_train).predict_proba(X_test) # 计算平均 ROC 曲线和 AUC fpr_micro, tpr_micro, _ = roc_curve(y_test.ravel(), y_score.ravel()) auc_micro = auc(fpr_micro, tpr_micro) # 计算平均 ROC 曲线和 AUC fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) mean_tpr /= n_classes fpr_macro = all_fpr tpr_macro = mean_tpr auc_macro = auc(fpr_macro, tpr_macro) plt.figure(figsize=(8, 6)) # 绘制平均 ROC 曲线 plt.plot(fpr_micro, tpr_micro, label=f'Micro-average ROC curve (area = {auc_micro:.2f})', color='deeppink') # 绘制平均 ROC 曲线 plt.plot(fpr_macro, tpr_macro, label=f'Macro-average ROC curve (area = {auc_macro:.2f})', color='navy') # 添加对角线基线和其他设置 plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic for multi-class data') plt.legend(loc="lower right") plt.show() ``` 上述代码展示了如何利用 `scikit-learn` 库实现多分类问题中的 ROC 和 AUC 计算,并分别给出了 MacroMicro 平均的结果可视化。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值