- 博客(99)
- 资源 (3)
- 收藏
- 关注
原创 利用梯度下降法求最小值及动画展示
animation = FuncAnimation(fig, animate, init_func=init, frames=21, interval=2000, blit=True, repeat=False) # 画动画。text = [f'第{i}次迭代x={x_list[i]:.4f},y={y_list[i]:.4f}' for i in range(21)]print(f'第{i}次迭代,x = x - lr * 2 * x={x:.4f},y=x**2={y:.4f}')
2023-09-06 22:31:40 540
原创 Swin Transformer之PatchMerging原理及源码
1.图示 2.原理Patch Merging层进行下采样。该模块的作用是做降采样,用于缩小分辨率,调整通道数 进而形成层次化的设计,同时也能节省一定运算量。在CNN中,则是在每个Stage开始前用stride=2的卷积/池化层来降低分辨率。patch Merging是一个类似于池化的操作,但是比Pooling操作复杂一些。池化会损失信息,patch Merging不会。每次降采样是两倍,因此在行方向和列方向上,按位置间隔2选取元素,拼成新的patch,再把所有patch都concat起来作为一整个张量,最后
2022-06-02 09:41:08 14830 6
原创 Swin Transformer中的PatchEmbed原理及代码说明
1.分块patch partitionusea patch size of 4 × 4 and thus the feature dimension of eachn patch is 4 × 4 × 3 = 48在这里设置了4 × 4× 3的块的大小,原始图像被 分成维度为4 × 4 × 3 = 48的小块。2.线性编码linear embeddingA linear embedding layer is applied on this raw-valued feature to ..
2022-05-30 22:34:25 3929
原创 链表的冒泡排序
#include <iostream>#include <string>using namespace std; struct student{ int age; string name; struct student *next;};void BubbleSort(struct student * head){ struct student *p,*q; for(p = head ; p != NULL; p = p -> next)...
2021-12-01 21:51:04 417
原创 Pytorch网络结构形状测试示例
import torchfrom torch.autograd import Variableimport torch.nn as nnimport torch.nn.functional as Fclass ConvNet(nn.Module): def __init__(self): ##nn.module子类的函数必须在构造函数中执行父类的构造函数 ##下式等价于nn.Module.__init__(self) super(ConvN.
2021-11-17 20:59:15 7631
原创 Transformer 中的 Positional Encoding 不同版本的实现
1.根据原文公式实现import numpy as npimport math import matplotlib.pyplot as pltmax_len = 10 # 单词个数d_model = 16 # 位置向量维度大小pe = np.zeros((max_len, d_model))for pos in range(max_len): for i in range(d_model // 2): pe[pos, 2 * i] = np.sin(p
2021-05-21 21:32:03 529
原创 使用multcloud在云盘之间传送文件
1.申请使用多个云盘1.1谷歌云盘1.2 微软onedrive从https://onedrive.live.com/about/zh-cn/signin/登录进来;可惜只有5G2.使用multcloud2.1注册登录网址为:https://www.multcloud.com/2.2添加网盘2.3网盘间传送3 使用微软onedrive开始菜单。这里可能要配置登录一下onedrive。我的电脑...
2020-12-18 17:51:37 3086 1
原创 解决MDPI模版编译不通的方法
1,模版下载地址:https://www.mdpi.com/authors/latex2,解决方案:https://blog.csdn.net/weixin_42268054/article/details/88898984友情提醒:安装MiKTeX以管理员身份运行
2020-12-18 17:36:07 6862 2
原创 windows安装GDAL
1.下载相应版本的GDALhttps://www.lfd.uci.edu/~gohlke/pythonlibs/#pygame2.python -m pip install安装文件(GDAL-3.1.4-cp36-cp36m-win_amd64.whl)
2020-12-15 13:56:06 1260
原创 解决Eclipse中pydev环境下tensorflow和keras不支持CUDA链接库
1.测试是否tensorflow和keras是否支持CUDA链接库import tensorflow as tfsess = tf.Session(config=tf.ConfigProto(log_device_placement=True))from keras import backend as Kimport kerasprint keras.__version__print K.tensorflow_backend._get_available_gpus()2.eclip.
2020-07-02 10:57:48 274
原创 MobileNetV2在python2.7中报错TypeError: new() received an invalid combination of arguments完美解决
在github下载的MobileNetV2,在python2.7上报错如下:TypeError: new() received an invalid combination of arguments - got (float, float, int, int), but expected one of:* (torch.device device)* (torch.Storage storage)* (Tensor other)* (tuple of ints size, torch.d...
2020-06-12 09:49:09 4718
转载 TPR、FPR、precision、recall、accuracy、ROC、AUC
https://www.cnblogs.com/sunupo/p/12827639.html
2020-06-08 19:46:17 466
原创 二值化图像分割的评价标准的实现
import numpy as np# 获得混淆矩阵def BinaryConfusionMatrix(prediction, groundtruth): """Computes scores: TP = True Positives 真正例 FP = False Positives 假正例 FN = False Negatives 假负例 TN = True Negatives 真负例 return: TP, FP, FN, TN.
2020-06-08 17:25:27 1575 1
原创 ubuntu18.04 python2.7安装gdal
sudo apt-get updatesudo apt-get install gdal-binsudo apt-get -y install python-gdal
2020-06-02 09:00:46 398
原创 DeepLabV3+ 基本原理及Pytorch版注解
1.原理图注意的地方:A.用到的sync_batchnorm.batchnorm比归一化包,pytorch版本的可以在https://github.com/acgtyrant/Synchronized-BatchNorm-PyTorch下载B.在python2.7中,引用的队列是大写import Queue import math import torch import torch.nn as nn import torch.nn.functional a...
2020-05-30 17:29:57 14282 7
原创 DeepLabV3+训练自定义数据集实例(3)
8,训练模型进入 models/research路径python deeplab/train.py \ --logtostderr \ --training_number_of_steps=1000 \ --train_split="train" \ --model_variant="xception_65" \ --atrous_rates=6 \ --atrous_rates=12 \ --atrous_rates=18 \ --
2020-05-29 11:47:43 868 5
原创 DeepLabV3+训练自定义数据集实例(2)
7.注册数据集在/models/research/deeplab/datasets 路径的data_generator.py 第93行copy该结构体:_MYDATA_INFORMATION = DatasetDescriptor( splits_to_sizes={ 'train': 9, # num of samples in images/training 'val': 2, # num of samples in images/validatio
2020-05-29 11:12:37 735
原创 DeepLabV3+训练自定义数据集实例(1)
1.下载数据集在这里面,用的是狗猫数据集中的猫数据的一部分,官方下载地址为:https://www.kaggle.com/c/dogs-vs-cats/data2.使用labelme最新版打标签我使用了11个猫的图像数据来制作,制作完成后如下图:3.采用改进的json_to_mask批量生成标签,制作成为标准数据集# -*- coding: utf-8 -*-import argparseimport base64import jsonimport osimport
2020-05-29 10:50:45 1957 3
原创 DeepLabV3+导出.pb模型并可视化测试
1.在modes/research目录下的终端执行下面命令:python deeplab/export_model.py \ --logtostderr \ --checkpoint_path="/home/lw/data/cityscapes/train/model.ckpt-2000" \ --export_path="/home/lw/data/pb/frozen_inference_graph.pb" \ --model_variant="xception_6
2020-05-28 10:24:32 2779 4
原创 DeepLabV3+训练Cityscapes数据集实例
1.数据集、脚本和模型下载1.1下载Cityscapes使用 Cityscapes官方数据:https://www.cityscapes-dataset.com/Cityscapes数据集包括leftImg8bit(11GB)和对应的标注集gtFine(241MB)。1.2下载脚本文件在https://github.com/mcordts/cityscapesScripts下载cityscapesScripts脚本,用于处理Cityscapes 数据集。1.3下载初始权重文件htt
2020-05-27 15:37:38 7959 7
原创 Ubuntu 18.04 + GTX 1070 + CUDA10 + cuDNN7 +DeepLabV3+环境配置
1.安装Ubuntu 18.04 ,见博客《安装双系统》2.安装GTX 1070驱动,见博客测试安装是否成功nvidia-smi3.cuda_10.0.130_410.48_linux.runsudo sh cuda_10.0.130_410.48_linux.run在.bashrc配置环境变量export PATH=/usr/local/cuda-10.0/bin:$PATHexport LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$...
2020-05-25 21:16:38 748
原创 在windows中同时安装两个版本的python,并用Eclipse够编译
1.在windows中分别下载并安装Python2.7和Python3.82.分别在path中设置环境变量,C:\Python27;C:\Python27\Scripts;C:\Python38;C:\Python38\Scripts;3,分别在C:\Python27和C:\Python38中将python.exe和pythonw.exe改为python2.exe和pythonw3.exe4.打开cmd,分别输入python2和python3即可进入相应版本5.针对不同版本,安装自己的模块时,分别运
2020-05-21 16:05:26 934
转载 微平均micro-F1,宏平均macro-F2计算方法
前言F1是我们常用的衡量指标,不知道有多少同学和我一样,对micro macro一直似懂非懂,于是今天手动算了一下,分享给大家~ 相信大家看了就明白了本文的前提是,读者已经懂了precision和recall的基本概念,不清楚的同学可以先去看一下其他的文章~差准率(precision)和查全率(recall)对于二分类来说,可以将标签分为正类和负类,如下图真实标签 \ 预测标签...
2019-07-09 10:43:48 6153 7
原创 Caffe报错/bin/ld: cannot find -lsatlas
错误提示LD -o .build_release/lib/libcaffe.so.1.0.0/bin/ld: cannot find -lsatlas/bin/ld: cannot find -ltatlas此问题对于Ubuntu开始可以通过安装 libatlas-base-dev 包解决,如下:sudo apt install libatlas-base-dev...
2019-05-25 17:14:22 414
原创 ubuntu16.04升级GCC/G++到5.4
1.$ sudo apt-get remove gcc2.$ sudo apt-get install gcc3.$ sudo apt-get remove g++4.$ sudo apt-get install g++
2019-05-25 16:56:38 2933
原创 ubuntu16.04下boost_1_70_0库的安装
boost‘准标准库’安装过程。系统是ubuntu虚拟机,安装的是boost_1_60_0。(1)首先去下载最新的boost代码包,网址www.boost.org。https://dl.bintray.com/boostorg/release/1.70.0/source/(2)进入到自己的目录,解压:bzip2 -d boost_1_60_0.tar.bz2tar xvf boo...
2019-05-23 15:54:37 2445
转载 (转)Ubuntu16.04上pip报错ModuleNotFoundError: No module named 'pip._internal'
默认是Python2.7 更新pip就不能用了,一直报错, 如下,root@iZwz98p61dhjsadfhjkarjhj5Z:~# pip -VTraceback (most recent call last): File "/usr/local/bin/pip", line 7, in <module> from pip._internal import m...
2019-05-18 11:04:04 767
原创 如何计算tensorflow计算model的大小size(2)
1,加adam优化器,保存模型import osimport tensorflow as tfimport tensorflow.contrib.slim as slimfrom tensorflow.python import pywrap_tensorflow CURRENT_DIR = os.getcwd()train_dir = CURRENT_DIR + '/...
2019-05-10 15:32:17 1774
原创 如何计算tensorflow计算model的大小size(1)
import osimport tensorflow as tfimport tensorflow.contrib.slim as slimCURRENT_DIR = os.getcwd()train_dir = CURRENT_DIR + '/logs/'a = tf.placeholder(tf.float32, shape=[None, 6, 512], name='a')...
2019-05-10 11:19:02 5324
原创 cifar10 32*32批次转227*227 适合AlexNet
import numpy as npimport cv2import osimport cPicklefrom PIL import Imageimport matplotlib.pyplot as pltCURRENT_DIR = os.getcwd() def read_cifar10_train_data(dataset_file_path): data_di...
2019-04-12 15:30:41 846
原创 cifar10 32*32转227*227 适合AlexNet
def read_cifar10_data(): data_dir = CURRENT_DIR+'/data/cifar-10-batches-py/' train_name = 'data_batch_' test_name = 'test_batch' train_X = None train_Y = None test_X = None ...
2019-04-11 21:03:04 1097
原创 python opencv提取关键帧
import cv2cap = cv2.VideoCapture('/home/lw/3661.mp4')fps = cap.get(cv2.CAP_PROP_FPS) # 获取帧速print fpsfWidth = cap.get(cv2.CAP_PROP_FRAME_WIDTH)print fWidthfHeight = cap.get(cv2.CAP_PROP_FRAME...
2018-05-08 10:03:31 7681 5
原创 python opencv读mp4视频
#获得视频的格式videoCapture = cv2.VideoCapture('/home/lw/3661.mp4') #获得码率及尺寸fps = videoCapture.get(cv2.CAP_PROP_FPS)size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(videoCapture.ge...
2018-05-08 09:46:40 22631 3
转载 ubuntu16.04 python2.7 安装配置OpenCV3.2.0
一,安装依赖sudo apt-get install build-essentialsudo apt-get -y install libopencv-dev build-essential cmake git libgtk2.0-dev pkg-config python-dev python-numpy libdc1394-22 libdc1394-22-dev libjpeg-dev lib...
2018-05-08 08:15:28 5360 2
原创 numpy与Image互转
from PIL import Image import numpy as npim = Image.open("/home/lw/a.jpg")im.show() img = np.array(im) # image类 转 numpyimg = img[:,:,0] #第1通道im=Image.fromarray(img) # numpy 转 image类...
2018-05-07 09:48:09 83323 2
原创 按图像通道拼成行向量数据
import numpy as npa = np.array([[[1,2,3],[1,2,3]],[[1,2,3],[1,2,3]]])print a.shapeprint a[:,:,0] #第1通道print a[:,:,1]print a[:,:,2]a = a.reshape(-1,3)print aprint a.shapea = a.Ta = a.resh...
2018-05-03 09:50:40 529
原创 pytorch tensor转换
import torchimport numpy as np#(1,3,16,2,2)# 1个视频,16个关键帧,3通道,长为2宽为2# 即一个视频,有16张 3通道,长为2宽为2 的图像data = np.array([[1,1,1,1,2,2,2,2,3,3,3,3],[1,1,1,1,2,2,2,2,3,3,3,3],[1,1,1,1,2,2,2,2,3,3,3,3],[1,1,...
2018-04-26 21:40:54 7211
vs2010在windows xp选择时出错,下载WindowsXP-KB971513-x86-CHS.exe补丁
2013-07-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人