目录
一、前言
2025年是AI人工智能从大规模使用到各个领域深耕细作的一年,AI大模型的能力在不断挖掘的同时,如何基于大模型做更进一步的升级呢,于是AI智能体就应运而生。AI智能体是结合了众多软件技术的合集,充分发掘大模型的能力,并且拓展大模型的能力,让更多使用者即使不懂大模型,也能低成本的快速掌握AI的使用。在众多的智能体平台中,像Coze , Dify ,FastGPT等,都在构筑自己的智能体平台,为普通的非互联网人员也能快速打造属于自己的智能体应用,接下来以Coze平台为例,基于Coze制作一个普通人高频使用的场景下的智能体应用,即生成朋友圈励志图文的智能体应用。
二、Coze介绍
2.1 Coze是什么
coze是新一代AI应用发布平台,不管你是否有编程经验,都可以在coze这个平台上面快速搭建基于大模型的各类AI应用,并将AI应用发布到各个社交平台,通讯软件等,也可以通过API或者SDK将AI应用集成到你的业务系统中。平台入口:https://www.coze.cn/home

2.2 Coze 可以做什么
借助Coze提供的可视化设计与编排工具,使用者可以通过零代码、少代码的方式,快速搭建基于大模型的各类AI项目,满足个性化需求,实现商业价值。
-
智能体:
-
智能体是基于对话的AI项目,它通过对话的方式接收用户输入,由大模型自动调用插件或工作流等方式执行用户指定的业务流程,并生成最终的回复。像智能客服,个人助理,心理咨询师,英语翻译助手等都是智能体的典型应用场景。
-
-
应用:
-
是指利用大模型技术开发的应用程序,在coze中搭建的AI具备完整的业务逻辑和可视化用户界面,属于独立的AI项目。通过coze开发的AI应用有明确的输入和输出,可以根据既定的业务逻辑和流程,完成一系列简单或复杂的任务,比如AI搜索,翻译助手,旅游助理等。
-
2.3 Coze 与其他智能体平台对比
Coze作为一个AI智能体开发平台,其核心优势在于强大的生态整合、出色的用户体验和面向场景的丰富模板,特别适合需要快速构建和部署应用的团队及个人。
为了让你能快速了解Coze与其他主流平台的差异,下面这个表从核心定位、上手难度和部署方式等关键维度进行了对比。
| 维度 | Coze | Dify | n8n | FastbuildAI |
| 核心定位 | 零代码AI Bot开发,注重快速落地 | 企业级LLM应用开发与运维(LLMOps) | 通用工作流自动化 | 开源AI应用与商业闭环 |
| 上手难度 | 低,零代码/可视化 | 中,需一定技术背景 | 中,自动化思维 | 信息缺失 |
| 部署方式 | 主要为公有云/SaaS服务 | 支持云服务和私有化部署 | 支持自托管/云托管 | 支持一键Docker私有部署 |
| 突出优势 | 字节生态整合、模板丰富、用户体验好 | 模型支持广、LLMOps能力强、灵活可控 | 节点数量多、跨系统集成能力强 | 内置支付/计费系统,商业变现快 |
| 主要局限 | 数据主权受限(仅公有云) | 无原生支付等商业功能 | AI功能相对较弱 | 文档迭代快,API变动可能较频繁 |
2.3.1 Coze 独特优势
除了表格中的基本对比,Coze在以下几个方面表现尤为突出:
-
强大的生态整合与发布渠道:Coze与字节跳动旗下的产品(如抖音、飞书)有深度集成,你构建的AI智能体可以非常方便地一键发布到这些主流平台,极大地简化了部署和推广流程。
-
极致的用户体验与快速验证:Coze采用零代码和可视化拖拽的方式构建工作流,对非技术背景的用户(如产品经理、运营人员)非常友好。配合其海量的预制模板,你可以在极短的时间内(可能只需几分钟到几小时)搭建出功能完整的AI应用并验证想法的可行性。
-
面向场景的AI办公能力:Coze在不断拓展其开箱即用的AI能力,例如直接生成和编辑PPT、处理Excel数据、进行多模态创作等。这意味着它不仅能做聊天机器人,还能直接成为提升个人和团队生产力的办公工具。
2.4 Coze 工作流介绍
Coze工作流是一个通过可视化节点串联的方式,将大型语言模型、插件、代码等模块组合成可重复调用的自动化流程的工具。即使您没有编程基础,也能用它来构建和部署复杂的AI应用。可以说如果没有工作流,一些复杂的智能体应用将无法做出来。下面这个表汇聚了Coze工作流的核心价值。
| 核心作用 | 关键特点 |
| 提升效率:自动化处理多步骤任务(如报告生成、数据采集) | 零代码可视化:通过拖拽节点搭建流程,无需编程基础 |
| 保证准确性:通过节点约束输出格式,避免大模型自由发挥导致的错误 | 灵活编排:支持条件分支、循环、并行处理等复杂逻辑 |
| 标准化流程:固化业务逻辑,确保不同执行者输出结果一致 | 动态调试:实时试运行并查看节点输出,快速定位问题 |
| 工具集成:无缝整合插件、API、数据库等外部资源,扩展大模型能力边界 | 跨平台发布:一键部署至飞书、豆包等平台,作为智能体功能模块调用 |
2.5 Coze 工作流典型使用场景
Coze工作流的应用范围非常广泛,以下是一些典型的场景:
-
📝 内容创作与运营
-
批量内容生成:自动生成小红书爆款文案、新闻摘要、视频脚本等。
-
多媒体内容制作:串联"文本生成→图生图→加字幕背景音乐"等节点,自动将古诗词生成短视频成片。
-
-
🛠️ 办公自动化与数据处理
-
智能客服与工单处理:自动分类用户咨询、回复常见问题,甚至能识别用户投诉情绪并触发优先处理流程。
-
数据同步与报表生成:自动从小红书等平台采集数据,并同步到飞书多维表格,定时生成和发送报表。
-
专业文档审查:例如法务合同审查工作流,可以自动读取合同文件,进行常规审查、法律引用条例审查,甚至查询甲方公司的经营风险。
-
-
🎓 教育与培训
-
自动出题组卷:根据用户输入的知识点、上传的文档或错题图片,自动生成包含选择、填空、简答等多种题型的试卷。
-
2.6 搭建工作流核心步骤
上手Coze工作流比较简单,通常按照以下几个步骤操作:
-
创建工作流:在Coze平台的资源库中点击创建新工作流,并为其命名。
-
编排工作流:从左侧面板拖拽所需节点到画布上,并将它们按逻辑顺序连接起来。随后,配置每个节点的具体输入和输出参数。
-
测试并发布:使用"试运行"功能验证工作流是否正确。测试成功后,即可发布该工作流,并可以将其添加到智能体中作为一项技能来调用。
在接下来的案例中,核心也是最关键的部分就是如何构建一个符合实际应用场景的工作流,然后在创建的智能体应用中引入自定义工作流即可。
三、构建励志图文智能体操作过程
参考下面的操作步骤完成智能体的应用构建。
3.1 完整操作步骤说明
本案例参考下面的几个步骤即可完成智能体应用的制作:
-
创建新应用
-
编写应用提示词
-
角色,技能,限制等
-
-
自定义工作流
-
结合实际业务场景配置工作流各个节点,以及各节点能力输出
-
-
应用引入自定义工作流
-
应用测试
-
发布应用
接下来,选择其中最核心也是难度比较高的工作流和工作流节点的配置部分进行详细的讲解。
3.2 自定义工作流与配置工作流
如下,创建一个新的工作流,工作流是本次的核心

确认之后,进入工作流的配置页面,如下

3.3 配置工作流
整体的思路是,给用户2个选择,第一种方式是,内置一个默认的方式,即应用自己为用户生成金句和励志图片,第二种是由用户自己输入关键词进行金句和图片的生成。所以工作流中将会用到分支。接下来会对这两种方式依次配置。
3.3.1 配置开始节点
开始节点配置3个参数:
-
参数1:布尔类型,让用户自己决定走哪个分支
-
用户输入的关键词
-
生成的图片数量

3.3.2 配置选择器节点
开始节点后增加一个选择器节点作为分支选择,接下来就需要依次配置不同的分支逻辑。

3.3.2.1 增加第一个循环节点
如果是标题固定,最终生成的图片数量不一样,但是图片的标题都是同一个。在第一个条件分支后面增加一个循环节点,如下:

外层循环节点配置的参数参考下图

循环体内要做的事情就是根据外面的提示词生成图片,因此需要在循环体增加一个图像生成的节点


图像生成节点的配置信息参考如下,主要配置包括:
-
选择“通用”模型
-
选择尺寸,根据自己的情况选择
-
输入参数选择开始节点的title

配置提示词
-
这个不做限制,根据自己的喜好进行设置即可
生成新海诚风格、简笔画、白色背景、一只三花猫,三花猫头顶的空白区域用卡通笔体写着标题{{title}}

循环节点配置完成后,注意循环节点的输出参数配置下,选择循环体的输出结果

3.3.2.2 效果测试
将上面的循环节点连接到结束节点,然后点击试运行,等待一会后,可以看到运行成功,成功生成了几张风格简单的图片,猫的头顶配上了title的标题内容,输出结果给了3个下载url,可以自行下载图片

放大之后,效果也还不错

通过上面的步骤我们就完成了第一个分支下的金句图片的生成,当然这个图片风格是类似的,名言固定的情况,只是图片上的配图不同。接下来操作第二个分支。
3.3.3 配置第二个分支节点
第二种方式,让大模型自动帮我们生成名言,然后传递给后面的流程作为生成的图片配图文案。
3.3.3.1 增加大模型节点
在第二个分支节点后,增加一个大模型节点,大模型节点的作用是根据用户输入的关键词,自动生成名言金句,大模型的节点配置信息如下:

配置一个输出参数,将生成的金句放在数组变量中

同时配置如下的系统提示词
帮我生成以{{title}}为类型的{{num}}条金句,只需要金句,并将每一条金句存入output数组变量里
3.3.3.2 增加一个批处理节点
紧接着增加一个批处理节点

外层批处理节点做如下配置

内存的批处理体中也是配置一个图像生成的插件,配置信息与上述的第一个类似,内层的生成结果最终返回到外层使用,系统提示词参考上一步的编写即可

3.3.3.3 增加一个变量聚合节点
从上面配置的流程图不难发现,两个选择节点对应了2个分支,两个分支最终都会生成金句图片,如果直接连接到结束节点会有问题,因为结果的参数可能不相同,添加一个变量聚合节点,在这个节点统一做处理就可以正常返回给结束节点了

节点配置信息如下,其输入参数即来自于前两个选择节点的输出
3.3.3.4 配置结束节点
结束节点的变量选择变量聚合的输出结果

到这里基本上就完成了整个工作流的配置,接下来需要通过试运行验证下效果,试运行阶段也是发现问题并进行适当微调的阶段。
3.3.4 试运行效果
按照上面的配置,我们应该测试两个分支的效果。
1)测试第一个分支
即固定励志金句,生成多个不一样的图片,输入标题之后,等待运行完毕,最后看到生成了3张图片

2)测试第二个分支
第二次选择False ,通过最终的试运行效果可以看到走了第二条分支,也生成了预期的图片

四、写在文末
本文通过一个实际案例详细介绍了基于Coze 工作流搭建励志图文的生成的完整过程,更多细节还可以在此基础上继续完善,希望对看到的同学有用,本篇到此结束,感谢观看。

1万+

被折叠的 条评论
为什么被折叠?



