左旋转字符串

题目描述:

定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
如把字符串abcdef左旋转2位得到字符串cdefab。
请实现字符串左旋转的函数,要求对长度为n的字符串操作的时间复杂度为O(n),空间复杂度为O(1) 

编程之美上有这样一个类似的问题,咱们先来看一下:

设计一个算法,把一个含有N个元素的数组循环右移K位,要求时间复杂度为O(N),
且只允许使用两个附加变量。

分析:

我们先试验简单的办法,可以每次将数组中的元素右移一位,循环K次。
abcd1234→4abcd123→34abcd12→234abcd1→1234abcd。
RightShift(int* arr, int N, int K)
{
     while(K--)
     {
          int t = arr[N - 1];
          for(int i = N - 1; i > 0; i --)
               arr[i] = arr[i - 1];
          arr[0] = t;
     }
}

虽然这个算法可以实现数组的循环右移,但是算法复杂度为O(K * N),不符合题目的要求,要继续探索。

假如数组为abcd1234,循环右移4位的话,我们希望到达的状态是1234abcd。
不妨设K是一个非负的整数,当K为负整数的时候,右移K位,相当于左移(-K)位。
左移和右移在本质上是一样的。

解法一:
大家开始可能会有这样的潜在假设,K<N。事实上,很多时候也的确是这样的。但严格来说,我们不能用这样的“惯性思维”来思考问题。
尤其在编程的时候,全面地考虑问题是很重要的,K可能是一个远大于N的整数,在这个时候,上面的解法是需要改进的。
仔细观察循环右移的特点,不难发现:每个元素右移N位后都会回到自己的位置上。因此,如果K > N,右移K-N之后的数组序列跟右移K位的结果是一样的。

进而可得出一条通用的规律:
右移K位之后的情形,跟右移K’= K % N位之后的情形一样,如代码清单2-34所示。
//代码清单2-34
RightShift(int* arr, int N, int K)
{
     K %= N;
     while(K--)
     {
          int t = arr[N - 1];
          for(int i = N - 1; i > 0; i --)
               arr[i] = arr[i - 1];
          arr[0] = t;
     }
}
可见,增加考虑循环右移的特点之后,算法复杂度降为O(N^2),这跟K无关,与题目的要求又接近了一步。但时间复杂度还不够低,接下来让我们继续挖掘循环右移前后,数组之间的关联。


解法二:
假设原数组序列为abcd1234,要求变换成的数组序列为1234abcd,即循环右移了4位。比较之后,不难看出,其中有两段的顺序是不变的:1234和abcd,可把这两段看成两个整体。右移K位的过程就是把数组的两部分交换一下。
变换的过程通过以下步骤完成:
 逆序排列abcd:abcd1234 → dcba1234;
 逆序排列1234:dcba1234 → dcba4321;
 全部逆序:dcba4321 → 1234abcd。
伪代码可以参考清单2-35。
//代码清单2-35
Reverse(int* arr, int b, int e)
{
     for(; b < e; b++, e--)
     {
          int temp = arr[e];
          arr[e] = arr[b];
          arr[b] = temp;
     }
}

RightShift(int* arr, int N, int k)
{
     K %= N;
     Reverse(arr, 0, N – K - 1);
     Reverse(arr, N - K, N - 1);
     Reverse(arr, 0, N - 1);
}

这样,我们就可以在线性时间内实现右移操作了。

稍微总结下:
编程之美上,
(限制书中思路的根本原因是,题目要求:“且只允许使用两个附加变量”,去掉这个限制,思路便可如泉喷涌)
1、第一个想法 ,是一个字符一个字符的右移,所以,复杂度为O(N*K)
2、后来,它改进了,通过这条规律:右移K位之后的情形,跟右移K’= K % N位之后的情形一样
复杂度为O(N^2)
3、直到最后,它才提出三次翻转的算法,得到线性复杂度。

下面,你将看到,本章里我们的做法是:
1、三次翻转,直接线性
2、两个指针逐步翻转,线性
3、stl的rotate算法,线性

好的,现在,回到咱们的左旋转字符串的问题中来,对于这个左旋转字符串的问题,咱们可以如下这样考虑:
1.1、思路一:

对于这个问题,咱们换一个角度可以这么做:
将一个字符串分成两部分,X和Y两个部分,在字符串上定义反转的操作X^T,即把X的所有字符反转(如,X="abc",那么X^T="cba"),那么我们可以得到下面的结论:(X^TY^T)^T=YX。显然我们这就可以转化为字符串的反转的问题了。

不是么?ok,就拿abcdef 这个例子来说(非常简短的三句,请细看,一看就懂):
1、首先分为俩部分,X:abc,Y:def;
2、X->X^T,abc->cba, Y->Y^T,def->fed。
3、(X^TY^T)^T=YX,cbafed->defabc,即整个翻转。

我想,这下,你应该了然了。
然后,代码可以这么写(已测试正确):

  1. //Copyright@ 小桥流水 && July  
  2. //c代码实现,已测试正确。  
  3. //http://www.smallbridge.co.cc/2011/03/13/100%E9%A2%98  
  4. //_21-%E5%B7%A6%E6%97%8B%E8%BD%AC%E5%AD%97%E7%AC%A6%E4%B8%B2.html  
  5. //July、updated,2011.04.17。  
  6. #include <stdio.h>  
  7. #include <string.h>  
  8.   
  9. char * invert(char *start, char *end)  
  10. {     
  11.     char tmp, *ptmp = start;      
  12.     while (start != NULL && end != NULL && start < end)    
  13.     {     
  14.         tmp = *start;     
  15.         *start = *end;        
  16.         *end = tmp;       
  17.         start ++;     
  18.         end --;   
  19.     }  
  20.     return ptmp;  
  21. }  
  22.   
  23. char *left(char *s, int pos)   //pos为要旋转的字符个数,或长度,下面主函数测试中,pos=3。  
  24. {  
  25.     int len = strlen(s);  
  26.     invert(s, s + (pos - 1));  //如上,X->X^T,即 abc->cba  
  27.     invert(s + pos, s + (len - 1)); //如上,Y->Y^T,即 def->fed  
  28.     invert(s, s + (len - 1));  //如上,整个翻转,(X^TY^T)^T=YX,即 cbafed->defabc。  
  29.     return s;  
  30. }  
  31.   
  32. int main()  
  33. {     
  34.     char s[] = "abcdefghij";      
  35.     puts(left(s, 3));  
  36.     return 0;  
  37. }  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值