目前,数据已成为企业最宝贵的资产之一。然而,数据的爆炸性增长也带来了诸多管理难题,尤其是在数据安全和合规性方面。为了有效管理数据资产,企业必须采取系统化的方法对数据进行分类和分级,确保各类数据得到恰当的保护和利用。
而随着《中华人民共和国数据安全法》等法律法规的实施,企业数据管理面临更高的要求。数据分类分级不仅有助于企业更好地掌握内部数据情况,还能为数据安全防护提供针对性的措施。本文将根据国家标准GB/T 43697-2024《数据安全技术数据分类分级规则》,为企业提供一个清晰的数据分类分级流程。
核心步骤概览:
-
数据资产梳理:全面了解企业的数据资产,包括结构化和非结构化数据。
-
制定内部规则:根据行业标准和企业特点,制定适合的数据分类分级细则。
-
实施数据分类:对数据进行分类,识别特殊类别数据。
-
实施数据分级:对数据进行分级,确定数据的安全级别。
-
审核上报目录:审核分类分级结果,形成数据目录并上报。
-
动态更新管理:根据数据变化,定期更新数据分类分级体系
1.数据资产梳理
数据资产梳理是数据分类分级的首要步骤,其目的是全面了解企业所持有的数据资产。这一步骤包括数据的识别、编目和评估。数据资产梳理的结果通常是一个详细的数据地图,它能够帮助企业明确数据的来源、类型、存储位置、使用方式和重要性。
-
数据识别:通过系统扫描和人工审查,识别企业内所有数据的存储位置和格式。
-
数据编目:对识别出的数据进行分类和记录,形成数据目录。
-
数据评估:评估数据的价值、风险和合规性要求,确定数据的初步分类和分级。
2. 制定内部规则
在数据资产梳理的基础上,企业需要制定一套内部规则来指导数据分类分级的具体实施。这些规则应基于企业的业务需求、数据敏感性以及法律法规的要求。
-
规则制定:结合行业标准和企业实际情况,制定数据分类分级的细则。
-
规则审核:通过内部会议和跨部门协作,对规则进行审核和完善。
-
规则发布:将最终确定的规则以书面形式发布,并确保所有相关部门和人员都能够理解和遵守。
3. 实施数据分类
实施数据分类是根据制定的规则,将数据按照其属性和特征进行系统的分类。这一步骤要求对数据进行详细的分析,并将其分配到预定义的类别中。
以下是企业数据分类的一些常用方法:
-
按业务场景分类:根据企业的不同业务场景,如研发、制造、销售、人力资源等,将数据进行分类。
-
按数据来源分类:将数据分为内部数据和外部数据,或者原始数据和二手数据。
-
按数据类型分类:如结构化数据、非结构化数据、主数据、交易数据、元数据等。
-
按数据用途分类:例如,将数据分为操作性数据、分析性数据、存档数据等。
-
按数据的计量层次分类:将数据分为定类数据、定序数据、定距数据和定比数据。
-
分类依据:根据数据的内容、用途、来源和影响等因素进行分类。
-
分类实施:由数据管理团队或指定人员执行分类操作,确保数据被正确分类。
-
分类验证:对分类结果进行验证,确保分类的准确性和一致性。
4. 实施数据分级
数据分级是根据数据的重要性和敏感性,将数据分配到不同的级别。这一步骤要求对数据的风险和价值进行评估,并确定相应的保护措施。
对数据进行分级,根据国家标准GB/T 43697-2024《数据安全技术 数据分类分级规则》,确定核心数据、重要数据和一般数据的范围。
企业还采用以下方法进行数据分级:
-
按敏感程度分级:将数据分为非敏感数据、内部敏感数据、高度敏感数据等级别。
-
按受影响的程度分级:根据数据泄露或非法利用后可能造成的危害程度进行分级。
-
按法律法规要求分级:遵循《网络安全法》、《数据安全法》、《个人信息保护法》等相关法律法规,对数据进行分类分级。
-
按数据的价值和重要性分级:将数据分为一般数据、重要数据和核心数据。
-
动态调整分级:数据的类别级别可能因时间变化、政策变化、安全事件发生、不同业务场景的敏感性变化或相关行业规则不同而发生改变,因此需要对数据分类分级进行定期审核并及时调整。
5. 审核上报目录
审核上报目录是对数据分类分级结果的最终确认,确保所有数据都经过了正确的分类和分级,并按照规定程序上报。
-
审核流程:建立审核流程,对分类分级结果进行全面审查。
-
目录编制:编制数据分类分级目录,记录所有数据的分类和分级信息。
-
目录上报:按照组织内部或外部监管机构的要求,上报数据分类分级目录。
6. 动态更新管理
数据分类分级不是一次性的活动,而是一个持续的过程。随着业务的发展和数据的变化,数据的分类和分级可能需要调整。
-
监控变化:监控数据属性和业务需求的变化,及时识别分类分级的调整需求。
-
定期审查:定期对数据分类分级进行审查,确保其与当前的业务和法规要求保持一致。
-
更新实施:根据审查结果,及时更新数据的分类和分级,确保数据管理的持续有效性。