如何检查pytorch版本以及cuda的版本

文章介绍了如何在Python中使用PyTorch检查CUDA版本、GPU可用性、CUDA-toolkit版本以及CUDNN版本。同时讨论了是否必须安装CUDA-toolkit,指出仅安装显卡驱动也可在PyTorch中使用GPU,但可能无法使用nvcc。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、检查pytorch的版本

import torch
print(torch.__version__)

2、检查cuda的版本(pytorch所用的cuda版本)

首先确认本机gpu可用

import torch
print(torch.cuda.is_available())
print(torch.cuda.device_count()) # 查看gpu的数目
print(torch.cuda.get_device_name(0) # 基于序号获取gpu的名称,设备默认编号从0开始

然后,查看所用cuda版本,有两个版本需要查看:

  • 版本1:pytorch运行时真正用的版本,即安装的cuda_toolkit版本。

cuda_toolkit各各版本下载地址:CUDA Toolkit Archive | NVIDIA Developer

import torch
import torch.utils.cpp_extension
torch.utils.cpp_extension.CUDA_HOME  
  • 版本2:pytorch支持的cuda版本,比如torch+cuda102等,即编译该 Pytorch release 版本时使用的 cuda 版本。

import torch
torch.version.cuda

通过两种方式查看得到的cuda版本,正常来讲应该保持一致。

注意:还有一个cuda版本,即gpu驱动程序(gpu dirver)支持的cuda版本(显卡驱动下载地址:官方驱动 | NVIDIA),可以在nvidia显卡管理面板查看,也可以通过nvidia-smi命令查看。此版本为驱动程序支持的最大cuda版本。理论上,无论是安装的cuda_toolkit版本还是pytorch的gpu版本,其cuda版本号都不能大于gpu dirver支持的版本。

3、查看cudnn版本

cudnn版本的查看比较特殊,需要进入cuda_toolkit安装目录下,找到cudnn.h头文件,打开后,在开始的地方,可以看到三个大写的变量及对应的数字,分别是Major_version,minor_version等,把三个数字拼在一起,即cudnn的版本。

4、讨论:cuda-toolkit是否必须安装?

查阅相关资料后,发现很多人在只安装了显卡驱动的情况下,就已经可以在pytorch中使用gpu来训练和推理,根本无需额外安装cuda-toolkit,但是nvcc是肯定不能用的。实际上,cuda-toolkit是用来进行gpu编程的,这不是意味着只是使用pytorch的话,由于torch已经是编译完的(已经可以运行),因此才会出现此种情况。

至于是不是这样的的,大家可以自行尝试。

### 使用 Conda 查看 PythonPyTorchCUDA 版本 为了确认当前环境中已安装的 PythonPyTorch 及其依赖项(如 CUDA 工具包)的具体版本,可以采用以下方法: #### 查看 Python 版本 可以通过简单的命令来获取 Python 解释器的版本信息: ```bash python --version ``` 此命令会返回类似 `Python 3.6.x` 的输出[^2]。 #### 查看 PyTorch 版本 对于 PyTorch 而言,在 Python 环境下运行特定的导入语句即可得知所使用的库版本: ```python import torch print(torch.__version__) ``` 这段代码将打印出像 `1.12.1` 这样的具体版本号[^3]。 #### 查看 CUDA 版本 要了解当前环境中的 CUDA 工具包版本,有两种方式可选。一种是在终端里直接调用 nvcc 编译器查询;另一种则是利用 PyTorch 提供的功能函数间接获知 GPU 上可用的 CUDA 计算能力等级。 - **通过 NVCC 查询** ```bash nvcc --version ``` - **借助 PyTorch 获取** ```python import torch print(f"CUDA Available: {torch.cuda.is_available()}") print(f"GPU Name(s): {[torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())]}") print(f"CUDA Version used by PyTorch: {torch.version.cuda}") ``` 上述脚本能帮助验证是否正确设置了 CUDA 支持以及显示设备名称和数量等附加信息。 #### 综合检查所有组件版本的方法 如果希望一次性获得整个 Anaconda 环境内所有软件包的状态概览,则可以使用 conda list 命令来进行全面扫描: ```bash conda list | grep 'python\|pytorch\|cudatoolkit' ``` 这将会过滤并展示与 PythonPyTorch 或者 CUDA 工具包有关联的所有条目及其对应版本号码。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值