Numpy_04 通用函数

github博客传送门
博客园传送门

Numpy系列

Numpy_01 创建 指定数据类型 查看维度和数据类型 简单的数学运算
Numpy_02 索引和切片
Numpy_03 转置和轴对换
Numpy_04 通用函数
Numpy_05 数据处理
Numpy_06 数组的文件输入输出 线性代数

numpy函数的使用

一元ufunc 开根 e次方

import numpy as np

arr = np.arange(10)  # 创建一个 0-9 的数组
print(arr)
print(np.sqrt(arr))  # 返回一个开根后的数组
print(np.exp(arr))  # 返回一个e次方的数组

返回两个数组对应位置的最大值

import numpy as np

x = np.random.randn(8)  # 创建一个 8 位的随机值 数组
y = np.random.randn(8)  # 创建一个 8 位的随机值 数组

print('-----')
print(x)
print('-----')
print(y)
print('-----')
print(np.maximum(x, y))  # 返回两个数组对应位置的最大值到新数组里
print('-----')

返回两个数组 将浮点数 拆分为小数部分赋给第一个变量 整数部分赋给第二个变量

import numpy as np

arr = np.random.randn(7) * 5  # 生成一个随机的 7 位数组 并乘以 5
print(arr)
remainder, whole_part = np.modf(arr)  # 将浮点数 拆分为 小数部分和整数部分 小数部分赋给前一个值 整数赋给后一个
print(remainder)
print(whole_part)

最后附上几张函数表的图:
第一张
第二张
第三张

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值