SSL2694 2017年8月15日提高组T1 字符串(math,组合数取模)

2017年8月15日提高组T1 字符串

Description

有两个长度为n且仅由小写字母组成的字符串S,T,满足S和T恰好有k位不同。问在所有恰好与S有k位不同的字符串中,T按照字典序排在第几位。由于答案可能很大,模10^9+7输出。

Input

第一行两个整数n,k。
第二行一个字符串S。
第三行一个字符串T。

Output

一行一个整数表示答案。

分析:我们就从第一位开始统计:
首先字符串的第一位肯定不能大于T的第一位
那么如果S的第一位比T的第一位要小,那么第一位对答案的贡献就是
C(n-1,m-1)25^(m-1)(T[1]-‘a’-1)+C(n-1,m)*25^m然后要m–
如果S的第一位比T的第一位要大,那么第一位对答案的贡献就是C(n-1,m-1)25^(m-1)(T[1]-‘a’)然后要m–
如果S的第一位等于T的第一位,那么对答案的贡献就是C(n-1,m-1)25^(m-1)(T[1]-‘a’)
然后往下一位一样的接着处理就好了。
至于组合数取模:a/b%c=a*b^(c-2)%c;

代码

#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#define mo 1000000007
#define maxn 200000
using namespace std;

long long f[maxn],g[maxn],l[maxn],ans;
int n,k;
char s[maxn],t[maxn];

long long power(int a,int b)
{
    long long r=1,base=a;
    while(b)
    {
        if(b&1) r*=base;
        r%=mo;
        base*=base;
        base%=mo;
        b>>=1;
    }
    return r;
}

long long c(int x,int y)
{
    long long sum=f[x]*l[x-y]%mo*l[y]%mo;
    return f[x]*l[x-y]%mo*l[y]%mo;
}

int main()
{
    scanf("%d%d",&n,&k);
    cin>>s+1;
    cin>>t+1;
    f[0]=1;g[0]=1;l[0]=1;
    for (int i=1;i<=n;i++)
    {
        f[i]=f[i-1]*i%mo;
        g[i]=g[i-1]*25%mo;
        l[i]=power(f[i],mo-2);
    }
    ans=1;
    for (int i=1;i<=n;i++)
    {
        if (s[i]==t[i]) 
        {
            ans+=(t[i]-'a')*g[k-1]%mo*c(n-i,k-1)%mo;
            ans%=mo;
        }
        if (s[i]>t[i])
        {
            ans+=(t[i]-'a')*g[k-1]%mo*c(n-i,k-1)%mo;
            ans%=mo;
            k--;
        }
        if (s[i]<t[i])
        {
            ans+=(t[i]-'a'-1)*g[k-1]%mo*c(n-i,k-1)%mo;
            ans%=mo;
            if (n-i>=k) ans+=c(n-i,k)%mo*g[k]%mo;
            ans%=mo;
            k--;
        }
    }
    printf("%lld",ans);
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhanghaoxian1/article/details/77199008
个人分类: 数论 快速幂 逆元
上一篇SSL2689 2017年8月14日提高组T3 染色(树形dp)
下一篇SSL2703 2017年8月16日提高组T2 疾病(dfs)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭