2017年10月17日提高组 被关押的ymw
Description
ymw在宵夜的途中被巨龙抓住了,你现在要去解救他,到ymw被关押的道路是一个笛卡尔坐标系上一个n*m的长方形道路,顶点在(0,0)和(n,m),你从最左边任意一点进入,从右边任意一点到达ymw被关的地方,最左最右距离为n,上下距离为m。
其中长方形里面有k个didi,每个didi都有一个整点坐标,didi的大小可以忽略不计,因为每个点足够的大可以放得下他。
每个didi以及长方形上下两个边缘(宇宙边界)都有引力,为了成功救出ymw当然你离他们越远越好。
请问你走到终点的路径上,距离所有didi以及边界的最小值最大是多少
Input
Output
一行一个整数表示答案,保留5位小数
分析:把每个didi和上下边界之间两两连边,跑一次最小生成树,然后找一条最大的边/2就是答案,但是完全图的边比较多,用kruskal的话空间会炸,所以可以选择prim。
代码
#include <cstdio>
#include <algorithm>
#include <cmath>
#define maxn 17000
using namespace std;
typedef long long ll;
struct arr
{
int to,next;
ll val;
}a[maxn];
ll dis[maxn],ans;
int n,l,m,k,x[maxn],y[maxn],ls[maxn],pre[maxn];
bool vis[maxn];
ll dist(int a,int b)
{
if (a>k||b>k) return (ll)(y[a]-y[b])*(ll)(y[a]-y[b]);
return (ll)(x[a]-x[b])*(ll)(x[a]-x[b])+(ll)(y[a]-y[b])*(ll)(y[a]-y[b]);
}
void add(int p,int q,ll o)
{
a[++l].to=q;
a[l].next=ls[p];
ls[p]=l;
a[l].val=o;
}
void prim()
{
for (int i=1;i<=k+2;i++)
dis[i]=1e+18;
dis[k+1]=0;
for (int i=1;i<=k+2;i++)
{
int u=0;
ll min=1e+18;
for (int j=1;j<=k+2;j++)
if (!vis[j]&&dis[j]<min)
{
min=dis[j];
u=j;
}
vis[u]=true;
if (pre[u]>0)
{
add(u,pre[u],dis[u]);
add(pre[u],u,dis[u]);
}
for (int j=1;j<=k+2;j++)
if (!vis[j]&&dist(u,j)<dis[j])
{
dis[j]=dist(u,j);
pre[j]=u;
}
}
}
ll maxa(ll x,ll y)
{
if (x>y) return x;
return y;
}
void dfs(int x,int pr,ll p)
{
if (x==k+2) ans=p;
for (int i=ls[x];i;i=a[i].next)
if (a[i].to!=pr) dfs(a[i].to,x,maxa(p,a[i].val));
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for (int i=1;i<=k;i++)
scanf("%d%d",&x[i],&y[i]);
y[k+2]=m;
prim();
dfs(k+1,0,0);
printf("%.5lf",sqrt(ans)/2.0);
}