[NOI2015]程序自动分析
题目描述
在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。
考虑一个约束满足问题的简化版本:假设x1,x2,x3…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
输入输出格式
输入格式:
从文件prog.in中读入数据。
输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。
对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;
输出格式:
输出到文件 prog.out 中。
输出文件包括t行。
输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。
输入输出样例
输入样例#1:
2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
输出样例#1:
NO
YES
输入样例#2:
2
3
1 2 1
2 3 1
3 1 1
4
1 2 1
2 3 1
3 4 1
1 4 0
输出样例#2:
YES
NO
说明
【样例解释1】
在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。
在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。
【样例说明2】
在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。
在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。
【数据范围】
分析:把相等的加入同一并查集即可,数据太大就离散一下,STL还是很方便的。
代码
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#define N 300005
using namespace std;
struct arr
{
int x, y, e;
}a[N];
int f[N],b[N],n,t;
int find(int x)
{
if (f[x] == x) return x;
return f[x] = find(f[x]);
}
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
memset(b, 0, sizeof(b));
int tot = 0;
for (int i = 1; i <= n; i++)
{
scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].e);
b[++tot] = a[i].x;
b[++tot] = a[i].y;
}
sort(b + 1, b + tot + 1);
tot = unique(b + 1, b + tot + 1)- b - 1;
for (int i = 0; i <= tot; i++)
f[i] = i;
for (int i = 1; i <= n; i++)
{
a[i].x = lower_bound(b + 1, b + tot + 1, a[i].x) - b - 1;
a[i].y = lower_bound(b + 1, b + tot + 1, a[i].y) - b - 1;
if (a[i].e)
{
int u = find(a[i].x);
int v = find(a[i].y);
if (u != v) f[u] = v;
}
}
bool fl = false;
for (int i = 1; i <= n; i++)
if (!a[i].e)
{
int u = find(a[i].x);
int v = find(a[i].y);
if (u == v) fl = true;
if (fl) break;
}
if (fl) printf("NO\n"); else printf("YES\n");
}
}