5907. 【NOIP2018模拟10.16】轻功
Description
题目背景:
尊者神高达进入了基三的世界,作为一个 mmorpg 做任务是必不可少的,然而跑地图却令人十分不爽。好在基三可以使用轻功,但是尊者神高达有些手残,他决定用梅花桩练习轻功。
题目描述:
一共有 n 个木桩,要求从起点(0)开始,经过所有梅花桩,恰好到达终点 n,尊者神高达一共会 k 种门派的轻功,不同门派的轻功经过的梅花桩数不同,花费时间也不同。但是尊者神高达一次只能使用一种轻功,当他使用别的门派的轻功时,需要花费 W 秒切换(开始时可以是任意门派,不需要更换时间)。由于尊者神高达手残,所以经过某些梅花桩(包括起点和终点)时他不能使用一些门派的轻功。尊者神高达想知道他最快多久能到达终点如果无解则输出-1。
Input
第一行 n,k,W
接下来 k 行,每行为 ai 和 wi 代表第 i 种轻功花费 vi 秒经过 ai 个木桩。
接下来一行 Q 为限制条件数量。
接下来 Q 行,每行为 xi 和 ki 代表第 xi 个梅花桩不能使用第 ki 种门派的轻功经过。
Output
一行答案即所需最短时间。
Sample Input
Sample Input1:
6 2 5
1 1
3 10
2
1 1
2 1
Sample Input2:
6 2 5
1 1
3 10
0
Sample Output
Sample Output1:
18
样例解释 1:
先用第二种轻功花费 10 秒到 3,再用 5 秒切换到第一种轻功,最后再用 3 秒时间到 6.一共花费 10+5+3=18 秒
Sample Output2:
6
样例解释 2:
直接花费 6 秒到 6;
Data Constraint
20%的数据 n<=20,k<=10,Q<=200;
对于另外 20%的数据 W=0
对于另外 20%的数据 Q=0
所以数据满足 n<=500,k<=100,Q<=50000,vi<=1e7;
保证数据合法
Hint
Q:请问第一题可不可以往回跳
A:不可以
分析:设f[i][j]表示用第j种轻功到第i个梅花桩的最短时间,显然如果j,k符合条件,f[i][j] = f[i-a[k]][k]+t[k],然后判断要不要加w。
代码
#include <cstdio>
#define N 600
#define inf 1e15
#define ll long long
using namespace std;
struct arr
{
int x;
ll t;
}a[N];
ll f[N][105];
int n,m,q;
ll w;
int v[N][105],sum[N][105];
ll min(ll x, ll y){return x<y?x:y;}
bool check(int p, int q)
{
int s = p - a[q].x;
if (s < 1) s = 1;
for (int i = s; i <= p; i++)
if (v[i][q]) return false;
return true;
}
int main()
{
// freopen("qinggong.in","r",stdin);
// freopen("qinggong.out","w",stdout);
scanf("%d%d%lld", &n, &m, &w);
for (int i = 1; i <= m; i++)
scanf("%d%lld", &a[i].x, &a[i].t);
scanf("%d", &q);
for (int i = 1; i <= q; i++)
{
int x, y;
scanf("%d%d", &x, &y);
v[x][y]--;
v[x + a[y].x + 1][y]++;
}
for (int j = 1; j <= m; j++)
for (int i = 1; i <= n; i++)
{
sum[i][j] = sum[i - 1][j] + v[i][j];
f[i][j] = inf;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
if (sum[i][j] >= 0 && i - a[j].x >= 0)
{
for (int k = 1; k <= m; k++)
if (sum[i - a[j].x][k] >= 0)
if (k == j || i - a[j].x == 0) f[i][j] = min(f[i][j], f[i - a[j].x][k] + a[j].t);
else f[i][j] = min(f[i][j], f[i - a[j].x][k] + a[j].t + w);
}
ll ans = inf;
for (int i = 1; i <= m; i++)
ans = min(ans, f[n][i]);
if (ans == inf) ans = -1;
printf("%lld", ans);
fclose(stdin);
fclose(stdout);
}