剑指offer13.机器人的运动范围(中等)

在这里插入图片描述
一开始的误解:
以为满足数位之和<=k的地方都能到,实际上有可能是到不了的,因为不是x+y而是x的每一位和y的每一位相加!!!

思路一:dp
具体思路:由于只向右边和下边遍历,所以[i][j]的状态可以由[i-1][j]和[i][j-1]得到
dp[i][j]表示 是否可达,1表示可达0表示不可达
转移方程:dp[i][j]=dp[i][j-1]||dp[i-1][j]
边界:dp[0] = 1其他都是

class Solution {
public:
    bool isgo(int i, int j, int k) {
        int sum = 0;
        while (i) {
            sum += (i % 10);
            i /= 10;
        }
        while (j) {
            sum += (j % 10);
            j /= 10;
        }
        return sum <= k;
    }
    int movingCount(int n, int m, int k) {
        
        vector<int> dp(m);
        dp[0] = 1;
        int ans = 0; 
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < m; ++j) {
                if (!isgo(i, j, k)) dp[j] = 0;
                else dp[j] = dp[j] || (j - 1 >= 0 ? dp[j - 1] : 0);
                if (dp[j]) ans++;
            }
        }
        return ans;
    }
};

思路二:bfs

class Solution {
public: 
    int ans = 0;
    int flag[105][105] = {0};
    int xy[4][2] = {1, 0, -1, 0, 0, 1, 0, -1};
    bool isgo(int i, int j, int k) {
        int sum = 0;
        while (i) {
            sum += (i % 10);
            i /= 10;
        }
        while (j) {
            sum += (j % 10);
            j /= 10;
        }
        return sum <= k;
    }
    void bfs(int x, int y, int m, int n, int k) {

        queue<pair<int, int>> q;
        q.push({x, y});
        flag[x][y] = 1;
        while (!q.empty()) {
            auto frt = q.front();
            q.pop();
            ans++;
            int first = frt.first;
            int second = frt.second;
            for (int i = 0; i < 4; ++i) {
                int xx = first + xy[i][0], yy = second + xy[i][1];
                if (xx < 0 || xx >= m || yy < 0 || yy >= n) continue;
                if (isgo(xx, yy, k) && !flag[xx][yy]) {
                    q.push({xx, yy});
                    flag[xx][yy] = 1;
                }
            }
        }
    }
    int movingCount(int m, int n, int k) {
        bfs(0, 0, m, n, k);
        return ans;
    }
};

注意
从(0, 0)开始即可。

思路三:dfs

void dfs(int x, int y, int m, int n, int k) {

        flag[x][y] = 1;
        ans++;
        for (int i = 0; i < 4; ++i) {
            int xx = x + xy[i][0];
            int yy = y + xy[i][1];
            if (xx < 0 || xx >= m || yy < 0 || yy >= n) continue;
            if (isgo(xx, yy, k) && !flag[xx][yy]) dfs(xx, yy, m, n, k);
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值