优化 Elasticsearch(ES)的查询性能涉及多个方面,从查询本身到集群配置和硬件资源。以下是些关键的优化策略:
集群和硬件优化
负载均衡: 确保查询负载在集群中均衡分配,
硬件资源: 根据需要増加 CPU、内存或改善 Ⅳ/O 性能(例如使用 SSD)配置 JVM: 优化 JVM 设置,如堆大小,以提高性能。
合理分片和副本
虽然更多的分片可以提高写入吞吐量,因为可以并行写入多个分片。但是,查询大量分片可能会降低查询性能,因为每个分片都需要单独处理查询。而且分片数量过多可能会增加集群的管理开销和降低查询效率,尤其是在内存和文件句柄方面。所以,需要考虑数据量和硬件资源,合理设置分片数量。
但是这个说起来比较玄学,毕竟没有一种“一刀切”的方法来确定最优的分片和副本数量,因为这取决于多种因素,包括数据的大小、查询的复杂性、硬件资源和预期的负载等。
在ES每个节点上可以存储的分片数量与可用的堆内存大小成正比关系,但是 Elasticsearch并未强利规定国定限值。这里有一个很好的经验法则:确保对于节点上已配置的每个 GB,将分片数量保持在 20 以下。如果某个节点拥有 30GB 的堆内存,那其最多可有 600 个分片,但是在此限值范围内,您设置的分片数量越少,效果就越好。,一般而言,这可以帮助集群保持良好的运行状态。(来源参考:https://wwwelastic.co/cn/blog/how-manyshards-should-i-have-in-my-elasticsearch-cluster )
精确的映射和索引设置
映射(Mapping)是