量子计算即服务(QCaaS)落地难?软件工程视角的解决方案来了
论文信息
arXiv:2510.04982
Quantum Computing as a Service - a Software Engineering Perspective
Aakash Ahmad, Muhammad Waseem, Bakheet Aljedaani, Mahdi Fahmideh, Peng Liang, Feras Awaysheh
Comments: 37 pages, 10 images, 5 tables, Manuscript submitted to a Journal (2025)
Subjects: Software Engineering (cs.SE)
一段话总结
该论文从软件工程视角出发,通过系统映射研究(SMS)和基于架构的开发(ABD)两阶段方法,挖掘QCaaS领域的研究现状,提炼出四阶段量子服务开发生命周期,构建了分层参考架构,并分析了未来研究趋势,为QCaaS的工程化落地提供了理论框架与实践指南。
研究背景
量子计算就像一位潜力无限的“超级计算选手”,基于量子力学原理,凭借可编程量子比特和量子门,在量子信息处理、生物启发计算等领域展现出超越经典计算机的能力。但这位“选手”目前还面临不少烦恼:硬件有噪声(NISQ噪声问题)、软件生态不完善、专业人才稀缺,而且“出场费”极高,普通个人和组织难以负担。
这时候,量子计算即服务(QCaaS)就像一个“共享计算平台”应运而生。它以“按次付费”为核心,把量子硬件(处理器、内存)和软件(算法、模拟器)打包成公用计算资源,供没有量子设备的用户远程使用,大大降低了量子计算的使用门槛和成本。
不过,QCaaS的开发过程却乱象丛生。就像盖房子没有统一的施工图纸和流程,开发者们各自为战,导致量子比特利用率低、量子与经典任务分配不合理等问题。而量子软件工程(QSE),作为传统软件工程与量子力学的“结合体”,能通过架构模型、复用模式等实践解决这些问题,成为QCaaS工程化的关键支撑。正是在这样的背景下,研究团队开展了本次研究。
创新点
- 研究视角新颖:首次从软件工程视角对QCaaS进行系统研究,填补了“量子服务导向”工程化研究的空白。
- 成果体系化:提炼出四阶段量子服务开发生命周期,构建了分层参考架构,为QCaaS开发提供了可落地的“蓝图”。
- 研究方法务实:采用系统映射研究与基于架构的开发两阶段混合方法,既梳理了现有研究成果,又通过实例验证了架构的可行性。
一、核心概念
1. 量子计算与QCaaS的价值
- 量子计算基础:量子计算机(QC)基于量子力学原理,通过可编程量子比特(QuBits)和量子门(QuGates)实现“量子计算优越性”,在量子信息处理、生物启发计算等领域已展现出超越经典计算机的潜力,但面临硬件限制(如NISQ噪声问题)、软件生态缺失、专业人才稀缺等挑战。
- QCaaS的定义:作为“即服务(aaS)”模式的量子特化形式,QCaaS以“按次付费(pay-per-shot,单次量子任务执行)”为核心,将量子硬件(处理器、内存)和软件(算法、模拟器)作为公用计算资源,供无量子设备的个人/组织远程使用,缓解量子计算的高成本与技术门槛。
- 量子软件工程(QSE):传统软件工程与量子力学的结合,通过架构模型、复用模式等SE实践,解决量子软件的设计、开发与集成问题,是QCaaS工程化的核心支撑。
2. 研究动机
当前QCaaS开发缺乏系统化流程、工具支持及复用知识,导致量子比特利用率低、量子-经典任务分配不合理等问题。本文旨在通过SE视角,构建QCaaS的开发生命周期与参考架构,填补“量子服务导向”的工程化空白。
二、研究方法
采用两阶段混合方法,确保研究的系统性与实证性:
阶段 | 核心目标 | 关键步骤 |
---|---|---|
系统映射研究(SMS) | 挖掘现有文献中的SE解决方案与研究趋势 | 1. 制定搜索字符串(聚焦“量子+服务/云/微服务+计算/平台”); 2. 筛选5个数据库(IEEE Xplore、ACM等),经标题/摘要/全文筛选+质量评估(5项标准,总分≥2.0),最终纳入41篇同行评审研究; 3. 提取数据(研究demographics、生命周期阶段、趋势)。 |
基于架构的开发(ABD) | 将SMS结果整合为QCaaS参考架构 | 1. 架构分析(明确需求与场景); 2. 架构合成(构建分层架构); 3. 架构评估(用Shor算法验证可行性)。 |
三、核心研究结果(对应3个研究问题)
RQ1:QCaaS软件工程研究的Demographics特征
聚焦研究的发表分布、类型与应用领域,揭示领域发展现状:
- 发表频率:研究始于2021年,2023-2024年进入爆发期(29/41篇,占71%),从早期实验性方案转向架构/模式等系统性解决方案。
- 发表类型:会议论文占比最高(46%,如ICSE、ICSOC),其次是期刊文章(27%,如JSS),另有研讨会论文(12%)、书籍章节(5%)等。
- 研究类型:以“解决方案提案”为主(26/41篇,63%),聚焦架构、框架、原型设计;评估研究(4篇)、观点论文(4篇)、验证研究(6篇)占比较低。
- 应用领域:计算优化(34%,如量子搜索、整数分解)、量子服务与云计算(25%,如量子云部署)、网络安全(7%)、智能系统(5%)等,领域集中度较高。
RQ2:QCaaS的软件工程解决方案(核心:量子服务开发生命周期)
通过SMS提炼出四阶段量子服务开发生命周期,并明确各阶段的SE artifacts(需求、 notation、模式、工具等),具体如下:
生命周期阶段 | 核心任务 | 关键SE artifacts |
---|---|---|
1. 概念(Conception) | 定义量子关键需求(QSRs) | - 功能属性:量子服务交付(51%研究)、量子-经典混合计算(10%)、持续部署(7%); - 质量属性:计算效率(44%)、服务集成互操作性(10%)、量子比特利用率(5%)、安全性(10%)。 |
2. 建模(Modeling) | 可视化设计与复用模式应用 | - 建模符号(notation):UML(20%)、流程图/数学符号(39%)、图模型(10%); - 设计模式:API网关(17%)、量子-经典拆分(10%)、服务外观(17%)、服务组合(17%)。 |
3. 组装(Assembly) | 实现量子服务(用例+技术栈) | - 典型用例:流程自动化与优化(10%)、量子模拟(10%)、量子搜索(5%)、网络安全(5%); - 技术栈:编程语言以Python为主(46%,含Flask框架),量子框架以Qiskit(10%)、Q#(5%)为主。 |
4. 部署(Deployment) | 选择量子平台执行服务 | - 主流平台:Amazon Braket(29%,支持多厂商硬件)、IBM Quantum(24%,Qiskit生态)、D-Wave Leap(7%,量子退火)、Azure Quantum(5%)。 |
注:表2(原文)详细列出了41篇研究在各阶段的具体对应关系,为实践提供了可复用的“研究-方案”映射。
四、QCaaS参考架构
基于生命周期阶段,提出三层分层参考架构,作为QCaaS开发的“蓝图”,明确层级功能、角色与工件:
1. 架构层级与核心内容
层级 | 包含阶段 | 核心功能 | 关键角色 | 输出工件 |
---|---|---|---|---|
服务开发层 | 概念、建模、组装 | 定义QSRs、设计服务模型、实现量子服务 | 量子服务开发者 | QSRs、量子服务设计、源代码 |
服务部署层 | 部署 | 选择平台、执行服务、监控运行 | 服务提供者/用户 | 部署配置、服务执行结果 |
服务拆分层 | 量子-经典任务拆分 | 基于“量子-经典拆分模式”分配计算任务 | 量子领域工程师 | 拆分逻辑、混合执行计划 |
2. 架构验证示例:Shor算法的QCaaS实现
以整数质因数分解(Shor算法)为例,展示架构应用:
- 概念阶段:定义功能(输入整数输出质因数)与质量(量子比特高效利用)需求;
- 建模阶段:用UML组件图(展示服务结构)、序列图(展示消息传递),应用“编排器模式”与“量子-经典拆分模式”;
- 组装阶段:用Python+Qiskit实现经典(随机数生成、GCD计算)与量子(模指数运算、量子傅里叶变换)模块;
- 部署阶段:在Amazon Braket上部署,经典模块运行于云服务器,量子模块调用量子处理器。
五、QCaaS软件工程的新兴趋势(RQ3)
基于文献分析,未来研究需聚焦以下方向:
- 流程中心与人类辅助开发:构建量子特化SE流程(如量子DevOps),明确量子领域工程师、量子算法设计师等角色的职责,弥补专业人才缺口。
- 量子关键需求(QSRs)的实证研究:通过挖掘GitHub等开源平台,验证理论QSRs(如量子比特利用率)与实际开发需求的匹配度,建立QSRs分类体系。
- 模型驱动量子服务开发:基于UML、SoaML等notation,结合低代码平台(如Quantumoonlight),实现从设计模型到量子代码的自动化转换,降低开发门槛。
- 量子服务模式的实证挖掘:通过开源仓库分析,发现新的复用模式(如量子服务容错模式),建立“模式目录”提升开发效率。
- 持续测试与交付(CT/CD):开发量子特化测试工具(如针对量子噪声的模拟测试),整合DevOps流程,实现量子服务的快速迭代。
- 大语言模型(LLMs)融合应用:LLMs已用于量子电路模拟(如Grovergpt)、代码纠错(如LintQ-LLM)、框架迁移(如Qiskit版本适配),未来将成为量子-人类协同开发的核心工具。
六、研究影响与局限性
1. 研究影响
- 对学术研究:提供QCaaS的SE研究图谱,参考架构为后续研究提供基础,趋势分析明确未来方向(如QSRs实证、LLMs融合);
- 对工业实践:为量子服务开发者提供可复用模式(如API网关、量子-经典拆分)、技术栈指南(Python+Amazon Braket),降低QCaaS落地成本。
2. 局限性
- 内部有效性:文献选择依赖关键词搜索,可能遗漏相关研究;质量评估存在主观偏差(通过多作者交叉验证缓解);
- 外部有效性:仅基于41篇同行评审研究,缺乏工业界案例,结论的普适性需进一步验证;
- 构造有效性:量子领域术语(如QSRs)仍在演变,可能导致概念定义的时效性问题。
七、结论与未来工作
1. 核心贡献
- 首次从SE视角系统合成QCaaS的软件工程解决方案,明确四阶段开发生命周期;
- 提出分层参考架构,为QCaaS开发提供“蓝图”;
- 识别新兴趋势,为未来量子服务工程化提供 roadmap。
2. 未来工作
- 开展从业者调研,补充工业界视角;
- 实现参考架构的原型系统(如基于QADL量子架构描述语言);
- 挖掘GitHub等开源平台,实证分析量子服务开发的实际实践。
主要成果和贡献
核心研究成果(对应3个研究问题)
研究问题(RQ) | 核心发现 | 价值 |
---|---|---|
RQ1 | 研究始于2021年,2023-2024年爆发(71%论文);会议论文占比最高(46%);以解决方案提案为主(63%);应用领域集中在计算优化(34%)、量子服务与云计算(25%)等 | 清晰呈现QCaaS软件工程领域的发展现状,为后续研究找准定位 |
RQ2 | 提炼四阶段量子服务开发生命周期:概念(定义量子关键需求)、建模(可视化设计与复用模式应用)、组装(实现量子服务)、部署(选择平台执行服务) | 为QCaaS开发提供标准化流程,明确各阶段关键任务与产出 |
RQ3 | 未来趋势:流程中心与人类辅助开发、QSRs实证研究、模型驱动开发、量子服务模式实证挖掘、CT/CD、LLMs融合应用等 | 为领域未来研究指明方向,推动QCaaS软件工程持续发展 |
QCaaS参考架构贡献
构建了服务开发层、服务部署层、服务拆分层的三层分层架构,明确了各层级的功能、角色与输出工件。并以Shor算法为例,验证了架构的可行性,为QCaaS开发提供了可复用的“蓝图”。
关键问题
-
Q:QCaaS是什么?它能解决量子计算的什么问题?
A:QCaaS是量子计算即服务,以“按次付费”为核心,将量子软硬件作为公用资源供远程使用。它能缓解量子计算高成本、技术门槛高及硬件稀缺的问题。 -
Q:研究采用了什么方法来探究QCaaS的软件工程问题?
A:采用两阶段混合方法,先通过系统映射研究(SMS)挖掘41篇文献中的解决方案与趋势,再用基于架构的开发(ABD)整合成果构建并验证参考架构。 -
Q:四阶段量子服务开发生命周期各阶段的核心任务是什么?
A:概念阶段定义量子关键需求;建模阶段进行可视化设计与复用模式应用;组装阶段实现量子服务;部署阶段选择平台执行服务。 -
Q:QCaaS参考架构分为哪几层?各层作用是什么?
A:分服务开发层(定义需求、设计实现服务)、服务部署层(平台选择与服务执行监控)、服务拆分层(量子-经典任务分配),各层明确功能、角色与输出。
总结
该论文从软件工程视角为QCaaS研究做出了重要贡献,系统梳理了领域研究现状,提炼出标准化的开发生命周期和分层参考架构,还指明了未来研究方向。不过,研究也存在一定局限性,如文献选择可能有遗漏、缺乏工业界案例等。但整体而言,为QCaaS的工程化落地提供了坚实的理论与实践基础。