
软件工程
文章平均质量分 90
张较瘦_
某百强县Top1本科高校教师,主要从事教学、软件开发、信息系统项目管理、职业教育以及人工智能赋能教育教学的研究
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[论文阅读] AI+软件工程(迁移)| 从JDK8到21:FreshBrew如何为AI代码迁移画上“可信句号”
为解决 AI 代理在 Java 项目级迁移任务中缺乏可信评估的问题,伯克利团队提出 FreshBrew 基准 —— 包含 228 个高测试覆盖率(≥50%)的真实 Maven 仓库数据集,以及 “编译成功 - 测试通过 - 覆盖率下降≤5pp” 的三阶段防作弊评估协议。实验显示,顶尖模型 Gemini 2.5 Flash 在 JDK17 迁移中成功率达 52.3%,远超规则工具 OpenRewrite 的 7.0%,同时揭示了 AI 代理在 API 兼容性、依赖管理等方面的局限原创 2025-10-07 15:36:23 · 457 阅读 · 0 评论 -
[论文阅读] 软件工程 | 量子计算即服务(QCaaS)落地难?软件工程视角的解决方案来了
本文从软件工程(SE)视角出发,通过系统映射研究(SMS)和基于架构的开发(ABD)两阶段方法,探究量子计算即服务(QCaaS)的开发流程、参考架构及未来趋势。SMS阶段筛选5个数据库的41篇同行评审研究,提取研究现状与解决方案;ABD阶段整合结果构建分层参考架构,并以Shor算法验证可行性。研究提炼出四阶段量子服务开发生命周期,识别了流程中心开发、QSRs实证等未来趋势,旨在为QCaaS工程化落地提供理论框架与实践指南。原创 2025-10-07 11:53:16 · 614 阅读 · 0 评论 -
[论文阅读] AI+软件工程(DeBug)| 从11%到53%!双LLM驱动的工业级代码修复方案,Google数据集验证有效
针对工业界Agentic自动化程序修复(APR)系统生成补丁需人工审核时噪声过多的问题,本研究提出双LLM策略:Bug规避(修复前基于bug报告筛选易修bug)与补丁验证(修复后通过“编译测试+修复规范生成+LLM判断”筛选有效补丁)。在Google三类数据集(174个人工bug、198个NPE机器bug、50个sanitizer机器bug)上评估显示,双策略结合使人工bug审核成功率从11%升至53%,NPE机器bug有效率从38%升至62%,假阳性率低至0.04。该方案无需复杂代码库访问,为工业级APR原创 2025-10-06 19:54:52 · 773 阅读 · 0 评论 -
[论文阅读] AI+软件工程 | 开发者 AI 需求新指南:任务感知视角下的负责任 AI 实证研究
Rudrajit Choudhuri 团队联合微软对 860 名开发者开展混合方法研究,基于认知评估理论首次建立 “任务感知→AI 采纳→负责任 AI(RAI)优先级” 的映射关系。研究发现:开发者在核心工作(编码、测试)需 AI 提升效率但保留控制,事务性工作(文档、运维)需 AI 减负,人际 / 身份工作(指导、AI 集成)需限制 AI;RAI 优先级因场景而异(系统类重可靠性,人际类重公平性),最终为开发者 AI 工具设计提供了具体、情境化的实证指南。原创 2025-10-05 20:46:15 · 579 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程(测试)| 让 LLM 单元测试生成告别 “幻觉” 与模糊,示例精炼有了新方案
CLAST 旨在解决基于上下文学习(ICL)的大语言模型(LLM)单元测试生成中示例语义模糊的问题。现有方法如 RAGGen、TELPA 依赖高质量示例,但实际示例常存在多场景混合、文本模糊等缺陷,而 UTgen 等精炼技术易因 LLM 幻觉降低测试有效性。CLAST 结合程序分析与 LLM,通过 “测试净化”(拆分复杂测试为单场景)和 “文本清晰度增强”(LLM 生成 + AST 匹配后处理)提升示例质量。实验表明,CLAST 在 7 个项目中完全保留原始测试有效性,超 85.33% 用户偏好其清晰度原创 2025-10-04 09:45:00 · 766 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程 | 给AI生成代码“追根溯源”:CodeGenLink让版权风险一目了然
随着GitHub Copilot等LLM代码生成工具的普及,生成代码的溯源与版权合规问题日益凸显。本文提出CodeGenLink——一款VS Code扩展,通过两种操作模式(生成代码后自动搜链接、选中代码主动搜链接),结合LLM网页搜索、文本相似度分析与CCFINDERSW克隆检测筛选相关链接,并利用GitHub API、Google License Classifier等工具提取许可证信息。原创 2025-10-03 09:15:00 · 748 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程 | AFD——用“值流分析+LLM”破解C程序指针分析精度难题,26倍提升堆对象建模效率!
本文提出**AFD(Allocation Function Detector)**,一种结合“值流分析”与“大语言模型(LLMs)”的轻量级技术,专门解决C/C++程序中“自定义分配函数(AFs)未被识别”导致的指针分析精度不足问题。它先通过值流分析筛选无副作用的简单分配函数(SAFs),再用LLMs判断含潜在副作用的函数是否属于“错误处理路径中的可忽略副作用”,最终在15个真实C项目(如bash、git、openssl)上验证:AFD识别出超600个自定义AFs,使指针分析的建模堆对象数量提升26倍、别名原创 2025-09-29 11:18:03 · 500 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程 | 真实场景下GitHub Copilot生产力之谜:2年数据揭示客观提交无提升,开发者却直呼“好用”
本研究采用混合方法,以挪威公共部门敏捷组织NAV IT为对象,探究GitHub Copilot对开发者活动与感知生产力的影响。研究分析2年间703个仓库的26,317次非合并提交,对比25名Copilot用户与14名非用户的周级开发数据,并结合13次访谈与63份调查的定性反馈。结果显示:Copilot用户在工具引入前已显著更活跃(提交频率约为非用户2倍),工具使用后客观提交活动无统计显著变化;尽管如此,多数用户报告感知生产力提升,主要源于减少重复任务与改善工作流程,且工具未对代码质量产生负面影响。研究揭示了原创 2025-09-25 21:45:00 · 888 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程 | 35篇文献拆解!LLM如何重塑软件配置的生成、验证与运维
该综述以“配置使用流程”为框架,系统梳理了2022年至今35篇基于LLM的软件配置研究,清晰呈现了LLM在配置生成(提示增强为主)、验证(传统技术+LLM辅助)、运维(诊断修复闭环探索)三阶段的应用现状。研究发现,当前LLM已在网络配置、K8S配置等场景展现出实用价值,但仍面临泛化能力弱、可解释性差、依赖高质量资源等挑战。未来,需通过轻量微调、跨领域迁移学习、智能体闭环架构等技术,推动LLM从“特定场景助手”向“通用配置专家”演进,最终实现软件配置全流程的智能化、自动化落地原创 2025-09-24 11:24:19 · 662 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程 | 解决仓库级代码补全三大痛点!CodeRAG框架实现SOTA性能,还能降成本
现有仓库级代码补全方法多基于检索增强生成(RAG),但存在查询构建不恰当、检索路径单一、检索器与代码LLM错位三大问题。为此,本文提出CodeRAG框架:首先,通过对数概率引导的探测策略,利用代码LLM的置信度筛选关键代码块构建检索查询;其次,融合稀疏检索、密集检索与数据流引导检索,实现多路径代码知识获取;最后,设计偏好对齐的BESTFIT重排序机制,用Qwen3-8B筛选最优知识,并蒸馏为轻量重排序器降低开销。原创 2025-09-23 22:30:01 · 530 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件开发 | 本地 LLM 编程能力 “大摸底”:8 个模型挑战 3589 道 Kattis 题,差距竟这么大!
本研究针对专有云LLM隐私风险高、本地LLM评估缺失的问题,扩展AI代码生成评估框架FACE(支持Ollama离线运行、JSON数据整合、断点续跑),采用3589道Kattis题(禁止分享答案,确保评估真实性),对8个6.7-9B参数的本地LLM开展测试。结果显示:本地LLM整体接受率低,最佳的Yi-Coder(5.7%)和Qwen2.5-Coder(5.4%),仅为Gemini 1.5(10.9%)、ChatGPT-4(10.7%)的一半;且仅能处理部分Easy/Medium题,Hard题几乎无解。研究明原创 2025-09-23 09:27:20 · 885 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程 | 4907个用户故事验证!SEEAgent:解决敏捷估计“黑箱+不协作”的终极方案
这篇论文提出了一款名为SEEAgent的LLM多智能体框架,专门解决敏捷开发中“工作量估计难”的痛点——比如团队用“规划扑克”主观猜点不准、传统ML模型给结果不给解释、还没法和人协作的问题。SEEAgent靠“长期记忆”(微调Llama-3.1或用GPT-4o-mini学项目知识,减少幻觉)、“短期记忆”(存会话和历史故事)、“行动+通信模块”(支持聊天解释和提交估计)实现“估计准、能唠、可解释”,还能装“前端/后端”角色。实验用4907个用户故事验证,微调版比Deep-SE等SOTA模型更准;原创 2025-09-20 22:51:28 · 882 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程(文档管理)| LLM赋能软件设计文档审查,富士通这项研究让效率提升有了新解法
富士通研究团队针对软件设计文档人工审查效率低、易出错的问题,提出基于LLM的自动化审查方案。研究首先梳理11个审查视角并分级,明确通用LLM可处理基础任务;重点解决日语Excel文档复杂表格的识别难题,开发基于词性分析的智能格式转换方法(符号多用JSON,自然语言多用Markdown)。实验显示,转换后缺陷检测召回率提升0.43-0.63,5000字符内效果最佳。该方案已开发为Web工具在金融等领域试点,显著提升审查效率,但仍需突破高级视角审查和长文档处理等挑战。原创 2025-09-16 09:15:00 · 1115 阅读 · 0 评论 -
[论文阅读] 人工智能 + 软件工程 | 深度解析可解释AI如何破解软件工程“黑盒”难题
摘要 本文综述了可解释人工智能(XAI)在软件工程(SE)中的应用研究。系统梳理了XAI的概念起源、核心定义及评估方法,重点分析了XAI在SE中的四大典型应用场景:恶意软件检测(SBMDS系统处理3.9万+样本)、高风险组件检测(改进OSR算法)、软件负载调配(Gil/Gil+工具)和二进制代码相似性分析(BINKIT基准+TIKNIB工具)。针对当前研究存在的客观评估稀缺、标准不统一等问题,提出了未来发展的四个方向。研究为破解AI在SE中的"黑盒"难题提供了系统性的技术参考和方法指导。原创 2025-09-15 15:00:00 · 3023 阅读 · 0 评论