介绍
在某些应用中,充足的注释样本通常是费力的、昂贵的,甚至是不切实际的,例如,冷启动推荐[和药物发现。为了使人工智能系统具有类似人类的能力,少射击学习(FSL)成为一个重要而广泛研究的问题。
现有的FSL研究大致可分为四类:
即基于度量的方法、基于优化的方法、基于图的方法和基于语义的方法。尽管他们的方法完全不同,但几乎所有的方法都通过两阶段的元学习框架来解决FSL问题。、meta- training和meta-test阶段。
最近,Chenet al发现,引入一个额外训练阶段可以显著提高表现。该方法首先通过在整个基类上学习分类器来预先训练特征提取器。然后,采用基于参数的元学习对其进行微调。在元测试阶段,构建基于均值的原型,通过具有余弦距离的最近邻分类器对新类进行分类。
我们不是对特征提取器进行微调,而是关注如何从少数标记样本中估计具有代表性的原型,特别是当这些样本远离其地面真实中心时。
问题定义:
它由一些有标记的样本组成(称为支持集)
未标记的样本组成(称为查询集),M表示Q中的图像数量。。
还有一个带有丰富标记的辅助数据集,其中B表示图像的个数,从基类Cbase集合中抽样的
四个阶段
包括预训练、学习完成原型、元训练和元测试。
预训练:在这个阶段,我们建立并训练一个卷积神经网络(CNN)分类器。我们用基础类的样本建立并训练一个卷积神经网络(CNN)分类器。然后,去掉最后一个softmax层,分类器变成一个参数为θf()的特征提取器特征提取器。这提供了一个良好的嵌入表示。
学习完成原型
原型完成网络(ProtoComNet)作为一个元学习器。它负责补充不完整原型的缺失,
首先对图2中描述的工作流程做一个概述。
第1步。我们为所有的 "类 "构建原始知识。这些知识是什么类型的属性特征种类,例如,袋鼠有长脸和白肚皮,斑马有长脸和四只脚。我们注意到这样的知识是很容易获得的,比如说。从WordNet中获得。
A表示类部件/属性集合,其中F是属性个数,R表示属性与类之间的关联矩阵。
用Glove计算所有类和属性的语义嵌入,采用平均词嵌入的方式,表示为:
我们将在原语知识中具有相应零件/属性的所有基类样本表示为一个集库。然后计算其均值和对角协方差