2021-09-08

梯度消亡的解决方案

采用不使用梯度的网络训练方法:https://link.springer.com/article/10.1007/s10898-012-9951-y(Derivative- free optimization: a review of algorithms and comparison of software implementa

  1. 基于遗传、进化算法
  2. 粒子群优化算法

过拟合

过拟合和欠拟合
过拟合就是训练时的表现特别好,但是网络并没有学到一个好的解决问题的方法,导致测试时的结果反而特别差。

过拟合的解决方法

  1. DropOut
  2. L2正则化
  3. L1正则化
  4. MaxNorm
    过拟合的网络:
    假设这是一个过拟合的网络

. DropOut训练:DropOut rate 1/3
DropOut的使用:在训练时先确定DropOut rate的数, 根据具体的训练任务,来确定隐藏某个隐藏层的节点。在训练结束后,还是要恢复整个网络,以后的使用也是用以前的网络。由于在训练时去掉了某个隐藏层的节点,导致参数增大,最后需要每个参数都要乘以 1-DropOut 这个系数。

L2 正则化

在这里插入图片描述

L1正则化

在这里插入图片描述

最大范数约束(Max Norm)

最大范数约束

神经元系数的初始化

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值