HTTP必知必会——常见面试题总结

1、常用的HTTP方法有哪些?
GET:
用于请求访问已经被URI(统一资源标识符)识别的资源,可以通过URL传参给服务器
POST:用于传输信息给服务器,主要功能与GET方法类似,但一般推荐使用POST方式。
PUT: 传输文件,报文主体中包含文件内容,保存到对应URI位置。
HEAD: 获得报文首部,与GET方法类似,只是不返回报文主体,一般用于验证URI是否有效。
DELETE:删除文件,与PUT方法相反,删除对应URI位置的文件。
OPTIONS:查询相应URI支持的HTTP方法。


2、GET方法与POST方法的区别
区别一:

get重点在从服务器上获取资源,post重点在向服务器发送数据;
区别二:
get传输数据是通过URL请求,以field(字段)= value的形式,置于URL后,并用"?"连接,多个请求数据间用"&"连接,如http://127.0.0.1/Test/login.action?name=admin&password=admin,这个过程用户是可见的;
post传输数据通过Http的post机制,将字段与对应值封存在请求实体中发送给服务器,这个过程对用户是不可见的;
区别三:
Get传输的数据量小,因为受URL长度限制,但效率较高;
Post可以传输大量数据,所以上传文件时只能用Post方式;
区别四:
get是不安全的,因为URL是可见的,可能会泄露私密信息,如密码等;
post较get安全性较高;
区别五:
get方式只能支持ASCII字符,向服务器传的中文字符可能会乱码。
post支持标准字符集,可以正确传递中文字符。


3、HTTP请求报文与响应报文格式
请求报文包含三部分:

a、请求行:包含请求方法、URI、HTTP版本信息
b、请求首部字段
c、请求内容实体
响应报文包含三部分:
a、状态行:包含HTTP版本、状态码、状态码的原因短语
b、响应首部字段
c、响应内容实体


4、常见的HTTP相应状态码
200:
请求被正常处理
204:请求被受理但没有资源可以返回
206:客户端只是请求资源的一部分,服务器只对请求的部分资源执行GET方法,相应报文中通过Content-Range指定范围的资源。
301:永久性重定向
302:临时重定向
303:与302状态码有相似功能,只是它希望客户端在请求一个URI的时候,能通过GET方法重定向到另一个URI上
304:发送附带条件的请求时,条件不满足时返回,与重定向无关
307:临时重定向,与302类似,只是强制要求使用POST方法
400:请求报文语法有误,服务器无法识别
401:请求需要认证
403:请求的对应资源禁止被访问
404:服务器无法找到对应资源
500:服务器内部错误
503:服务器正忙


5、HTTP1.1版本新特性
a、默认持久连接节省通信量,只要客户端服务端任意一端没有明确提出断开TCP连接,就一直保持连接,可以发送多次HTTP请求

b、管线化,客户端可以同时发出多个HTTP请求,而不用一个个等待响应

c、断点续传原理



6、常见HTTP首部字段
a、通用首部字段
(请求报文与响应报文都会使用的首部字段)
Date:创建报文时间
Connection:连接的管理
Cache-Control:缓存的控制
Transfer-Encoding:报文主体的传输编码方式
b、请求首部字段(请求报文会使用的首部字段)
Host:请求资源所在服务器
Accept:可处理的媒体类型
Accept-Charset:可接收的字符集
Accept-Encoding:可接受的内容编码
Accept-Language:可接受的自然语言
c、响应首部字段(响应报文会使用的首部字段)
Accept-Ranges:可接受的字节范围
Location:令客户端重新定向到的URI
Server:HTTP服务器的安装信息
d、实体首部字段(请求报文与响应报文的的实体部分使用的首部字段)
Allow:资源可支持的HTTP方法
Content-Type:实体主类的类型
Content-Encoding:实体主体适用的编码方式
Content-Language:实体主体的自然语言
Content-Length:实体主体的的字节数
Content-Range:实体主体的位置范围,一般用于发出部分请求时使用


7、HTTP的缺点与HTTPS
a、通信使用明文不加密,内容可能被窃听
b、不验证通信方身份,可能遭到伪装
c、无法验证报文完整性,可能被篡改

HTTPS就是HTTP加上加密处理(一般是SSL安全通信线路)+认证+完整性保护


8、HTTP优化

利用负载均衡优化和加速HTTP应用

利用HTTP Cache来优化网站

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 41
    点赞
  • 253
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 好的,下面是对大数据面试题——spark面试题(一)的回答: 1. 什么是Spark?它与Hadoop有什么区别? Spark是一个快速、通用、可扩展的大数据处理引擎,它可以在内存中进行数据处理,因此比Hadoop更快。与Hadoop相比,Spark的优点在于它可以在内存中进行数据处理,因此速度更快,而且它支持更多的数据处理方式,例如流处理、图形处理等。 2. Spark的核心组件有哪些? Spark的核心组件包括Spark Core、Spark SQL、Spark Streaming、MLlib和GraphX。 3. 什么是RDD?它有哪些特点? RDD是Spark中的一个基本概念,它代表一个不可变的分布式数据集合。RDD具有以下特点: - 可以在内存中进行计算,因此速度快; - 支持多种操作,例如map、reduce、filter等; - 可以进行持久化,以便在后续计算中重复使用。 4. Spark中的map和flatMap有什么区别? map和flatMap都是RDD中的转换操作,它们的区别在于: - map操作对每个元素进行转换,返回一个新的元素; - flatMap操作对每个元素进行转换,返回一个包含多个元素的序列。 5. 什么是Spark的shuffle操作? Spark的shuffle操作是指将数据重新分区的操作,它通发生在reduce操作之前。Shuffle操作将数据从多个节点上收集到一个节点上,然后重新分区,以便进行后续的计算。 6. Spark中的cache和persist有什么区别? cache和persist都是将RDD持久化到内存中,以便在后续计算中重复使用。它们的区别在于: - cache操作默认将数据持久化到内存中,而persist操作可以指定将数据持久化到内存、磁盘或者其他存储介质中; - cache操作是persist操作的一种简化形式,它默认将数据持久化到内存中,并且只能持久化到内存中。 7. Spark中的reduceByKey和groupByKey有什么区别? reduceByKey和groupByKey都是对键值对RDD进行操作的函数,它们的区别在于: - reduceByKey操作在每个分区内先进行本地聚合,然后再进行全局聚合,因此效率更高; - groupByKey操作将所有的键值对都进行网络传输,然后在一个节点上进行聚合,因此效率较低。 8. Spark中的broadcast变量有什么作用? broadcast变量是一种只读的变量,它可以在所有节点上共享,以便在计算过程中使用。使用broadcast变量可以避免在网络上传输大量的数据,从而提高计算效率。 9. 什么是Spark的checkpoint操作? Spark的checkpoint操作是将RDD持久化到磁盘上,以便在后续计算中重复使用。与cache和persist不同的是,checkpoint操作将数据持久化到磁盘上,以便在内存不足时可以从磁盘上恢复数据。 10. Spark中的Task是什么? Task是Spark中的一个基本概念,它代表一个可以在一个节点上执行的计算任务。Spark将一个RDD分成多个分区,每个分区对应一个Task,这些Task可以并行执行,以提高计算效率。 ### 回答2: 今天我们来讨论一下关于Spark大数据面试的一些见问题。Spark是一种基于Hadoop的开源计算系统,它能够快速处理大规模数据,并且支持多种编程语言,包括Java、Scala和Python等。以下是一些Spark面试题及其答案: 1. Spark有哪几种部署模式? Spark有三种部署模式,分别是本地模式、集群模式和分布式模式。本地模式指的是在本地运行Spark应用程序,不需要连接到外部计算机。集群模式指的是单个Spark集群环境,它由一组Spark节点组成,可以在数据中心或云中运行。分布式模式指的是使用多个Spark集群并行处理大规模数据。 2. Spark和Hadoop的区别是什么? Spark和Hadoop都是处理大规模数据的工具,但它们有一些区别。首先,Spark处理数据速度快,因为它将数据存储在内存中,而Hadoop则将数据存储在磁盘中。其次,Spark支持更多的编程语言,包括Java、Scala和Python等,而Hadoop只支持Java。此外,Spark具有更好的机器学习和图形处理功能,可以更好地支持大规模数据分析。 3. Spark的RDD是什么? RDD是Spark中重要的概念,全称为Resilient Distributed Dataset。它是一个不可变的分布式数据集合,可以分区存储在不同节点上,并且每个分区都可以在并行处理中进行处理。RDD支持两种操作,即转化操作和行动操作。转化操作将一个RDD转换为另一个RDD,而行动操作返回一个结果或将结果输出至外部系统。 4. Spark的优化技术有哪些? Spark优化技术包括数据本地化、共享变量、宽依赖和窄依赖、缓存和持久化,以及数据分区等技术。数据本地化将数据存储在尽可能接近计算节点的位置,以减少网络传输的开销。共享变量将用的变量通过广播或累加器的方式在节点中共享,从而减少网络传输量。宽依赖和窄依赖指的是在转化操作中RDD之间的依赖关系,窄依赖表示每个父分区最多与一个子分区有关联,而宽依赖则表示多个子分区可能与多个父分区关联。缓存和持久化技术可将RDD保存在内存中,从而加速访问速度。数据分区可以将数据划分为较小的块进行并行处理。 5. Spark Streaming是什么? Spark Streaming是Spark的一个扩展模块,它支持实时数据流处理。Spark Streaming可以将实时数据流以微批次方式处理,每个批次的数据处理平均耗时只有几秒钟。Spark Streaming可以将数据存储在内存或磁盘中,同时支持多种数据源和数据输出方式。 以上是关于Spark大数据面试题的一些回答,希望能够对大家有所帮助。如果你想深入学习Spark和大数据处理技术,可以考虑参加相关的培训课程或在线课程。 ### 回答3: Spark是一个分布式计算框架,它可以使大规模数据处理更加高效和便捷。因此,在企业招聘大数据领域的人才时,对Spark的技术能力要求越来越高。以下是Spark面试题的回答: 1. Spark有哪些组件? Spark框架由三个核心组件组成:Spark Core、Spark SQL和Spark Streaming。此外,还有Spark MLlib、Spark GraphX、Spark R等个别不同的子组件。 2. 什么是RDD?与Dataframe有什么区别? RDD(弹性分布式数据集)是Spark的核心数据抽象,是不可变的分布式对象集合。RDD可以从文件中读取数据、从内存中读取数据、并行修改数据等。而Dataframe和RDD类似,但是Dataframe更加强大,因为它是带有结构化的RDD。Dataframe在处理大规模结构化数据时非有效和便捷。 3. Spark如何处理缺失数据? Spark提供了两种处理缺失数据的方法:第一种是使用DataFrame API中的na函数,可以删除或替换缺失值;第二种是使用MLlib中的Imputer类,可以将缺失值替换为均值或中位数。 4. 什么是Spark的任务(task)? 一个任务是Spark作业中的最小执行单位。Spark集群上的作业被划分为多个任务,这些任务可以并行执行。 5. Spark的shuffle操作是什么?它为什么是昂贵的? Spark的shuffle操作是将一组数据重新分配到不同计算节点上的操作。Shuffle操作可能导致大量数据的磁盘写入、网络传输和数据重组,这些都是非昂贵的操作。因此,它在Spark集群中是一个相当昂贵的操作。 6. Spark中的Partition有什么作用? Partition是Spark中的数据划分单位。它可以将数据分成多个块并对每个块进行处理。Partition 可以提高 Spark 的并行度和运行效率,因为它可以将大规模数据分成多个小块,并在集群的多个计算节点上并行处理数据。 总而言之,Spark是大数据领域中使用最广泛的计算引擎之一,其技术理念和应用场景非广泛。对于求职者而言,掌握 Spark 的基本概念和技术特点,提高对 Spark 的理解和应用能力,将有助于更好地处理和分析大规模数据集。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leeon_l

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值