常用算法四(回溯算法)

1、概念

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

2、基本思想

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

3、用回溯法解题的一般步骤:

(1)针对所给问题,确定问题的解空间:

首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。

(2)确定结点的扩展搜索规则

(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

4、算法应用示例:

八皇后问题的递归实现

public class Empress { private int n ; //皇后个数 private int[] x ; //当前解 private long sum ; //当前已找到的可行方案数 private static int h ; //记录遍历方案序数 public Empress(){ this.sum = 0 ; //初始化方案数为1,当回溯到最佳方案的时候,就自增1 this.n = 8 ; //求n皇后问题,由自己定义 this.x = new int[n+1]; //x[i]表示皇后i放在棋盘的第i行的第x[i]列 h = 1 ; //这个是我额外定义的变量,用于遍历方案的个数,请看backTrace()中h变量的作用,这里将它定义为static静态变量 } public boolean place (int k){ for (int j = 1 ; j < k ; j++){ //这个主要是刷选符合皇后条件的解,因为皇后可以攻击与之同一行同一列的或同一斜线上的棋子 if ( (Math.abs(k - j)) == (Math.abs(x[j]-x[k])) || (x[j] == x[k]) ){ return false ; //如果是与之同一行同一列的或同一斜线上的棋子,返回false; } } return true ;//如果不是与之同一行同一列的或同一斜线上的棋子,返回true; } public void backTrace (int t){ if (t > n){ //当t>n时,算法搜索到叶节点,得到一个新的n皇后互不攻击放置方案,方案数加1 sum ++ ; //方案数自增1 System.out.println ("方案" + (h++) + ""); print(x); System.out.print ("\n----------------\n");//华丽的分割线 }else { //当t<=n时,当前扩展的结点Z是解空间中的内部结点,该节点有x[i]=1,2,…,n共n个子结点, //对于当前扩展结点Z的每一个儿子结点,由place()方法检测其可行性, //并以深度优先的方式递归地对可行子树搜索,或剪去不可行子数 for (int i = 1 ; i <= n ; i++){ x[t] = i ; if (place (t)){ //检查结点是否符合条件 backTrace (t+1); //递归调用 } } } } public void print (int[] a){ //打印数组,没啥的 for (int i = 1 ; i < a.length ; i++){ System.out.print ("皇后" + i + "在" + i + "行" +a[i] + "列、"); } } public static void main (String[] args){ Empress em = new Empress(); em.backTrace(1); //从1开始回溯 System.out.println ("\n详细方案如上所示,"+"可行个数为:" + em.sum); } }/*output:八皇后问题只有92种方案,这里只给出其中的三个方案 方案1 皇后1在1行1列、皇后2在2行5列、皇后3在3行8列、皇后4在4行6列、皇后5在5行3列、皇后6在6行7列、皇后7在7行2列、皇后8在8行4列、 ---------------- 方案2 皇后1在1行1列、皇后2在2行6列、皇后3在3行8列、皇后4在4行3列、皇后5在5行7列、皇后6在6行4列、皇后7在7行2列、皇后8在8行5列、 ---------------- . . . 方案92 皇后1在1行8列、皇后2在2行4列、皇后3在3行1列、皇后4在4行3列、皇后5在5行6列、皇后6在6行2列、皇后7在7行7列、皇后8在8行5列、 ---------------- *///~


分书问题
有编号为 A、B、C、D、E 的 5 本书,以及 5 个人,每本书可以分给每一个对该书有兴趣的人阅读,且每个人都只能分到一本自己
感兴趣的书。问当给定 5 个人对 5 本书的感兴趣情况时,怎样分配这 5 本书才能让每个人都开始阅读。

思路:每次都尝试给第 p 个人从 5 本书中分出他感兴趣的一本,若不能构成最终解,则撤销回溯到上一个人(即第 p – 1 个人)的分配。
我们如下确定:
int bookCounts 表示书的总数量,与总人数相等
int like [p] [b] = 1 表示第 p 个人喜欢读第 b 本书,即具体的问题初始条件;
int given [b] = p 表示第 b 本书分给了第 p 个人,即保存解的标识数组;
注:在这里 p ,b (即下标)都从 0 开始,算法实现如下:

/**
  * 回溯法求解分书问题 
  * @author haolloyin
  */

 public class AllacateBooks {
     // 书的总数量,与总人数相等
     private int bookCounts = 5;

     // like[p][b]=1 表示第 p 个人喜欢读第 b 本书
      private int[][] like = new int[bookCounts][bookCounts];

    // given[b] = p 表示将第 b 本书分配给第 p 个人
      private int[] given = new int[bookCounts];

    // 初始化标识数组 given[] 和传入各人喜欢书的情况数组
      private void init(int like[][]) {
        for (int i = 0; i < bookCounts; i++) {
           given[i] = -1; // -1 表示第 i 本书还没分配出去
        }
          this.like = like;
      }

    // 尝试给每一个人分配一本书
      public void allocateBook(int person) {
        for (int bookNum = 0; bookNum < bookCounts; bookNum++) {
          if (like[person][bookNum] == 1 && given[bookNum] == -1) {
             given[bookNum] = person;
             if (person == bookCounts - 1) {
                // 打印结果
                for (int i = 0; i < bookCounts; i++) {
                 System.out.println("人 " + (given[i]+1) + " <---> 书 " + ((char)(i + 'A')));
                }
                System.out.println();
             } else {
               // 为下一个人分配一本书
               allocateBook(person + 1);
             }
            // 失败,回溯重新寻找解
             given[bookNum] = -1;
         }
       }
      }

 // 测试
   public static void main(String[] args) {
    // 构造一个问题规模
      int[][] like = new int[][]{
           { 0, 0, 1, 1, 0 },
           { 1, 1, 0, 0, 1 },
           { 0, 1, 1, 0, 1 },
           { 0, 0, 0, 1, 0 },
           { 0, 1, 0, 0, 1 }};
    AllacateBooks allocateBooks = new AllacateBooks();
    allocateBooks.init(like);
    allocateBooks.allocateBook(0);
   }
 } 
 对应于所给的问题规模,所得的解如下:

人 2 <---> 书 A
人 3 <---> 书 B
人 1 <---> 书 C
人 4 <---> 书 D
人 5 <---> 书 E

人 2 <---> 书 A
人 5 <---> 书 B
人 1 <---> 书 C
人 4 <---> 书 D
人 3 <---> 书 E

[实验目的]

综合运用数组、递归等数据结构知识,掌握、提高分析、设计、实现及测试程序的综合能力。

[实验内容及要求]

以一个M×N的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出一条从入口到出口的通路,或得出没有通路的结论。

(1)根据二维数组,输出迷宫的图形。

(2)探索迷宫的四个方向:RIGHT为向右,DOWN向下,LEFT向左,UP向上,输出从入口到出口的行走路径。

[测试数据]

左上角(1,1)为入口,右下角(8,9)为出口。

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

1

1

0

1

0

1

1

1

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

1

0

1

1

1

1

0

0

1

1

1

0

0

0

1

0

1

1

1

0

0

0

0

0

0

[实现提示]

可使用回溯方法,即从入口出发,顺着某一个方向进行探索,若能走通,则继续往前进;否则沿着原路退回,换一个方向继续探索,直至出口位置,求得一条通路。假如所有可能的通路都探索到而未能到达出口,则所设定的迷宫没有通路。

import java.util.*; class Position{ public Position(){ } public Position(int row, int col){ this.col = col; this.row = row; } public String toString(){ return "(" + row + " ," + col + ")"; } int row; int col; } class Maze{ public Maze(){ maze = new int[15][15]; stack = new Stack<Position>(); p = new boolean[15][15]; } /* * 构造迷宫 */ public void init(){ Scanner scanner = new Scanner(System.in); System.out.println("请输入迷宫的行数"); row = scanner.nextInt(); System.out.println("请输入迷宫的列数"); col = scanner.nextInt(); System.out.println("请输入" + row + "行" + col + "列的迷宫"); int temp = 0; for(int i = 0; i < row; ++i) { for(int j = 0; j < col; ++j) { temp = scanner.nextInt(); maze[i][j] = temp; p[i][j] = false; } } } /* * 回溯迷宫,查看是否有出路 */ public void findPath(){ // 给原始迷宫的周围家一圈围墙 int temp[][] = new int[row + 2][col + 2]; for(int i = 0; i < row + 2; ++i) { for(int j = 0; j < col + 2; ++j) { temp[0][j] = 1; temp[row + 1][j] = 1; temp[i][0] = temp[i][col + 1] = 1; } } // 将原始迷宫复制到新的迷宫中 for(int i = 0; i < row; ++i) { for(int j = 0; j < col; ++j) { temp[i + 1][j + 1] = maze[i][j]; } } // 从左上角开始按照顺时针开始查询 int i = 1; int j = 1; p[i][j] = true; stack.push(new Position(i, j)); while (!stack.empty() && (!(i == (row) && (j == col)))) { if ((temp[i][j + 1] == 0) && (p[i][j + 1] == false)) { p[i][j + 1] = true; stack.push(new Position(i, j + 1)); j++; } else if ((temp[i + 1][j] == 0) && (p[i + 1][j] == false)) { p[i + 1][j] = true; stack.push(new Position(i + 1, j)); i++; } else if ((temp[i][j - 1] == 0) && (p[i][j - 1] == false)) { p[i][j - 1] = true; stack.push(new Position(i, j - 1)); j--; } else if ((temp[i - 1][j] == 0) && (p[i - 1][j] == false)) { p[i - 1][j] = true; stack.push(new Position(i - 1, j)); i--; } else { stack.pop(); if(stack.empty()){ break; } i = stack.peek().row; j = stack.peek().col; } } Stack<Position> newPos = new Stack<Position>(); if (stack.empty()) { System.out.println("没有路径"); } else { System.out.println("有路径"); System.out.println("路径如下:"); while (!stack.empty()) { Position pos = new Position(); pos = stack.pop(); newPos.push(pos); } } /* * 图形化输出路径 * */ String resault[][]=new String[row+1][col+1]; for(int k=0;k<row;++k){ for(int t=0;t<col;++t){ resault[k][t]=(maze[k][t])+""; } } while (!newPos.empty()) { Position p1=newPos.pop(); resault[p1.row-1][p1.col-1]="#"; } for(int k=0;k<row;++k){ for(int t=0;t<col;++t){ System.out.print(resault[k][t]+"\t"); } System.out.println(); } } int maze[][]; private int row = 9; private int col = 8; Stack<Position> stack; boolean p[][] = null; } class hello{ public static void main(String[] args){ Maze demo = new Maze(); demo.init(); demo.findPath(); } }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值