剑指 Offer 32 - II. 从上到下打印二叉树 II Z字打印

题目:

剑指 Offer 32 - II. 从上到下打印二叉树 II Z字打印
请实现一个函数按照之字形顺序打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右到左的顺序打印,第三行再按照从左到右的顺序打印,其他行以此类推。
例如:
给定二叉树: [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回其层次遍历结果:
[
[3],
[20,9],
[15,7]
]
提示:
节点总数 <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/cong-shang-dao-xia-da-yin-er-cha-shu-iii-lcof

解题:

关键点:层次遍历,奇数层和偶数层相反的输出顺序;

笨拙的解题方式:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
思路:
从上到下打印,即层次遍历树;区别在于Z字形。
正常层次遍历(从左到右)通常用队列queue容器存储,最后顺序输出;
Z字形,分奇偶层处理,
从右到左的用个临时的栈,正行放入栈之后,在循环弹出放入到queue里面。
*/
class Solution {

    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> result = new ArrayList<>();
        if (root == null) {
            return result;
        }
        LinkedList<TreeNode> queue = new LinkedList<>();
        queue.offer(root);

        int leftRightFlag = 0;
        while (!queue.isEmpty()) {
            LinkedList<Integer> queueValue = new LinkedList<>();
            LinkedList<Integer> stackValue = new LinkedList<>();
            for (int i = queue.size(); i > 0; i--) {
                TreeNode tem = queue.poll();
                if (leftRightFlag % 2 == 0) {
                    queueValue.offer(tem.val);
                } else {
                    stackValue.push(tem.val);
                }
                if (tem.left != null) {
                    queue.offer(tem.left);
                }
                if (tem.right != null) {
                    queue.offer(tem.right);
                }
            }

            if (!queueValue.isEmpty()) {
                result.add(queueValue);
            }
            if (!stackValue.isEmpty()) {
                LinkedList<Integer> queueValueTem = new LinkedList<>();
                while (!stackValue.isEmpty()) {
                    queueValueTem.add(stackValue.pop());
                }
                result.add(queueValueTem);
            }

            leftRightFlag = leftRightFlag + 1;
        }
        return result;
    }

}

来自大牛的解题讲解:🐂
题目分析:

方法一:层序遍历 + 双端队列
利用双端队列的两端皆可添加元素的特性,设打印列表(双端队列) tmp ,并规定:

  • 奇数层 则添加至 tmp 尾部 ;
  • 偶数层 则添加至 tmp 头部 ;

算法流程:

  1. 特例处理: 当树的根节点为空,则直接返回空列表 [] ;
  2. 初始化: 打印结果空列表 res ,包含根节点的双端队列 deque ;
  3. BFS 循环: 当 deque 为空时跳出;
    1. 新建列表 tmp ,用于临时存储当前层打印结果;
    2. 当前层打印循环: 循环次数为当前层节点数(即 deque 长度);
      1. 出队: 队首元素出队,记为 node;
      2. 打印: 若为奇数层,将 node.val 添加至 tmp 尾部;否则,添加至 tmp 头部;
      3. 添加子节点: 若 node 的左(右)子节点不为空,则加入 deque ;
  4. 将当前层结果 tmp 转化为 list 并添加入 res ;
  5. 返回值: 返回打印结果列表 res 即可;

复杂度分析:

  • 时间复杂度 O(N)O(N) : NN 为二叉树的节点数量,即 BFS 需循环 NN 次,占用 O(N)O(N) ;双端队列的队首和队尾的添加和删除操作的时间复杂度均为 O(1)O(1) 。
  • 空间复杂度 O(N)O(N) : 最差情况下,即当树为满二叉树时,最多有 N/2N/2 个树节点 同时 在 deque 中,使用 O(N)O(N) 大小的额外空间。

解题:

  /*
        层序遍历 + 双端队列
     */
    public static List<List<Integer>> levelOrder_v1(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        List<List<Integer>> res = new ArrayList<>();
        if (root != null) {
            queue.add(root);
        }
        while (!queue.isEmpty()) {
            LinkedList<Integer> tmp = new LinkedList<>(); // 双端队列
            for (int i = queue.size(); i > 0; i--) {
                TreeNode node = queue.poll();
                if (res.size() % 2 == 0) {
                    tmp.addLast(node.val); // 偶数层 -> 队列头部
                } else {
                    tmp.addFirst(node.val); // 奇数层 -> 队列尾部
                }
                if (node.left != null) {
                    queue.add(node.left);
                }
                if (node.right != null) {
                    queue.add(node.right);
                }
            }
            res.add(tmp);
        }
        return res;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松鼠喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值