题目:
剑指 Offer 32 - II. 从上到下打印二叉树 II Z字打印
请实现一个函数按照之字形顺序打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右到左的顺序打印,第三行再按照从左到右的顺序打印,其他行以此类推。
例如:
给定二叉树: [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回其层次遍历结果:
[
[3],
[20,9],
[15,7]
]
提示:
节点总数 <= 1000
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/cong-shang-dao-xia-da-yin-er-cha-shu-iii-lcof
解题:
关键点:层次遍历,奇数层和偶数层相反的输出顺序;
笨拙的解题方式:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
思路:
从上到下打印,即层次遍历树;区别在于Z字形。
正常层次遍历(从左到右)通常用队列queue容器存储,最后顺序输出;
Z字形,分奇偶层处理,
从右到左的用个临时的栈,正行放入栈之后,在循环弹出放入到queue里面。
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
LinkedList<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int leftRightFlag = 0;
while (!queue.isEmpty()) {
LinkedList<Integer> queueValue = new LinkedList<>();
LinkedList<Integer> stackValue = new LinkedList<>();
for (int i = queue.size(); i > 0; i--) {
TreeNode tem = queue.poll();
if (leftRightFlag % 2 == 0) {
queueValue.offer(tem.val);
} else {
stackValue.push(tem.val);
}
if (tem.left != null) {
queue.offer(tem.left);
}
if (tem.right != null) {
queue.offer(tem.right);
}
}
if (!queueValue.isEmpty()) {
result.add(queueValue);
}
if (!stackValue.isEmpty()) {
LinkedList<Integer> queueValueTem = new LinkedList<>();
while (!stackValue.isEmpty()) {
queueValueTem.add(stackValue.pop());
}
result.add(queueValueTem);
}
leftRightFlag = leftRightFlag + 1;
}
return result;
}
}
来自大牛的解题讲解:🐂
题目分析:
方法一:层序遍历 + 双端队列
利用双端队列的两端皆可添加元素的特性,设打印列表(双端队列) tmp ,并规定:
- 奇数层 则添加至 tmp 尾部 ;
- 偶数层 则添加至 tmp 头部 ;
算法流程:
- 特例处理: 当树的根节点为空,则直接返回空列表 [] ;
- 初始化: 打印结果空列表 res ,包含根节点的双端队列 deque ;
- BFS 循环: 当 deque 为空时跳出;
- 新建列表 tmp ,用于临时存储当前层打印结果;
- 当前层打印循环: 循环次数为当前层节点数(即 deque 长度);
- 出队: 队首元素出队,记为 node;
- 打印: 若为奇数层,将 node.val 添加至 tmp 尾部;否则,添加至 tmp 头部;
- 添加子节点: 若 node 的左(右)子节点不为空,则加入 deque ;
- 将当前层结果 tmp 转化为 list 并添加入 res ;
- 返回值: 返回打印结果列表 res 即可;
复杂度分析:
- 时间复杂度 O(N)O(N) : NN 为二叉树的节点数量,即 BFS 需循环 NN 次,占用 O(N)O(N) ;双端队列的队首和队尾的添加和删除操作的时间复杂度均为 O(1)O(1) 。
- 空间复杂度 O(N)O(N) : 最差情况下,即当树为满二叉树时,最多有 N/2N/2 个树节点 同时 在 deque 中,使用 O(N)O(N) 大小的额外空间。
解题:
/*
层序遍历 + 双端队列
*/
public static List<List<Integer>> levelOrder_v1(TreeNode root) {
Queue<TreeNode> queue = new LinkedList<>();
List<List<Integer>> res = new ArrayList<>();
if (root != null) {
queue.add(root);
}
while (!queue.isEmpty()) {
LinkedList<Integer> tmp = new LinkedList<>(); // 双端队列
for (int i = queue.size(); i > 0; i--) {
TreeNode node = queue.poll();
if (res.size() % 2 == 0) {
tmp.addLast(node.val); // 偶数层 -> 队列头部
} else {
tmp.addFirst(node.val); // 奇数层 -> 队列尾部
}
if (node.left != null) {
queue.add(node.left);
}
if (node.right != null) {
queue.add(node.right);
}
}
res.add(tmp);
}
return res;
}