随手记
zhangming0411
这个作者很懒,什么都没留下…
展开
-
【随手记】分类任务
对分类任务来讲,本质也就是经过常见的线性变换、拉伸、旋转将低维数据投影到高维空间,继而凸显放大了不同样本之间的差异,也就是说学习到了数据的分布特征。原创 2020-12-07 16:00:08 · 176 阅读 · 0 评论 -
[随手记]MFCC中DCT的c0被取代的原因
应该是原先的c0 作为直流分量过大 ,导致识别效果不好。用log energy来代替之前的直流分量c0 因为log缩小了一下会更好原创 2020-11-26 16:24:40 · 232 阅读 · 0 评论 -
【随手记】音色与共振峰的关系
但是无论音色如何差别,共振峰却都是近似的。只要在特定的频率范围内产生共振,就会给我们某个特定元音的感觉。这也是为什么不同人发不同的声,都能听懂的原因原创 2020-11-23 22:51:53 · 1037 阅读 · 0 评论 -
【随手记】共振峰的特性、与音高pitch
人声的共振峰有一个有意思的特性,每一个元音都有对应的一个共振峰,而且这个共振峰不随音高(pitch)的改变而改变。我们可以用不同的音高去发出相同一个元音。此时声带振动的频率改变,但是共鸣腔不变。也可以用相同的音高去发出不同的元音,此时声带振动的频率不变而共鸣腔的形状改变。也就是说,无论你声音高低,只要发出的是那个元音,那么被增强的频率就是它对应的频率。因此会造成的一个现象就是,当声音越来越高,高到超过了频率比较低的共振峰的时候,这个共振峰就失去了作用。这时候听起来的声音就会有点奇怪,但是这种奇怪,有原创 2020-11-23 22:45:29 · 2284 阅读 · 0 评论 -
【随手记】为什么共振峰是声音的主要特征?
我们在嘈杂的地方为什么还能听懂别人在说什么?因为音强最大的部分还是能为我们感知到。这就说明这是一个声音区别于其他声音的主要特征。也就是说,共振峰是声音的主要特征。(能量大)所以我们要测量共振峰的频率值,从物理上把握一个声音的性质。...原创 2020-11-23 22:13:25 · 676 阅读 · 0 评论