我的个人博客:zhang0peter的个人博客
win 10 anaconda python3.7 安装keras tensorflow-gpu
pytorch的安装参考这篇文章:windows anaconda python 3.7 安装 pytorch-gpu
2019-6-1:清华更新源已经关闭了
先添加清华源:
进入安装:
conda install keras-gpu
注意:在安装keras-gpu的时候一般会顺便把tensorflow-gpu也安装了,所以不需要额外安装tensorflow-gpu
WARNING: The conda.compat module is deprecated and will be removed in a future release.
Collecting package metadata: done
Solving environment: done
## Package Plan ##
environment location: C:\Users\peter\Anaconda3
added / updated specs:
- keras-gpu
The following packages will be downloaded:
package | build
---------------------------|-----------------
_tflow_select-2.1.0 | gpu 3 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
absl-py-0.7.0 | py37_0 157 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
astor-0.7.1 | py37_0 44 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
ca-certificates-2019.1.23 | 0 158 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
certifi-2019.3.9 | py37_0 155 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda-4.6.11 | py37_0 1.7 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
cudatoolkit-10.0.130 | 0 371.0 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
cudnn-7.3.1 | cuda10.0_0 199.1 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
gast-0.2.2 | py37_0 138 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
grpcio-1.16.1 | py37h351948d_1 947 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
keras-applications-1.0.7 | py_0 33 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
keras-base-2.2.4 | py37_0 489 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
keras-gpu-2.2.4 | 0 5 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
keras-preprocessing-1.0.9 | py_0 35 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
libprotobuf-3.6.1 | h7bd577a_0 1.9 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
markdown-3.0.1 | py37_0 125 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
mock-2.0.0 | py37_0 104 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
openssl-1.1.1b | he774522_1 5.7 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
pbr-5.1.3 | py_0 74 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
protobuf-3.6.1 | py37h33f27b4_0 514 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
tensorboard-1.13.1 | py37h33f27b4_0 3.3 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
tensorflow-1.13.1 |gpu_py37h83e5d6a_0 4 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
tensorflow-base-1.13.1 |gpu_py37h871c8ca_0 218.5 MB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
tensorflow-estimator-1.13.0| py_0 205 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
tensorflow-gpu-1.13.1 | h0d30ee6_0 2 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
termcolor-1.1.0 | py37_1 7 KB https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
------------------------------------------------------------
Total: 804.4 MB
The following NEW packages will be INSTALLED:
_tflow_select anaconda/pkgs/main/win-64::_tflow_select-2.1.0-gpu
absl-py anaconda/pkgs/main/win-64::absl-py-0.7.0-py37_0
astor anaconda/pkgs/main/win-64::astor-0.7.1-py37_0
cudatoolkit anaconda/pkgs/main/win-64::cudatoolkit-10.0.130-0
cudnn anaconda/pkgs/main/win-64::cudnn-7.3.1-cuda10.0_0
gast anaconda/pkgs/main/win-64::gast-0.2.2-py37_0
grpcio anaconda/pkgs/main/win-64::grpcio-1.16.1-py37h351948d_1
keras-applications anaconda/pkgs/main/noarch::keras-applications-1.0.7-py_0
keras-base anaconda/pkgs/main/win-64::keras-base-2.2.4-py37_0
keras-gpu anaconda/pkgs/main/win-64::keras-gpu-2.2.4-0
keras-preprocessi~ anaconda/pkgs/main/noarch::keras-preprocessing-1.0.9-py_0
libprotobuf anaconda/pkgs/main/win-64::libprotobuf-3.6.1-h7bd577a_0
markdown anaconda/pkgs/main/win-64::markdown-3.0.1-py37_0
mock anaconda/pkgs/main/win-64::mock-2.0.0-py37_0
pbr anaconda/pkgs/main/noarch::pbr-5.1.3-py_0
protobuf anaconda/pkgs/main/win-64::protobuf-3.6.1-py37h33f27b4_0
tensorboard anaconda/pkgs/main/win-64::tensorboard-1.13.1-py37h33f27b4_0
tensorflow anaconda/pkgs/main/win-64::tensorflow-1.13.1-gpu_py37h83e5d6a_0
tensorflow-base anaconda/pkgs/main/win-64::tensorflow-base-1.13.1-gpu_py37h871c8ca_0
tensorflow-estima~ anaconda/pkgs/main/noarch::tensorflow-estimator-1.13.0-py_0
tensorflow-gpu anaconda/pkgs/main/win-64::tensorflow-gpu-1.13.1-h0d30ee6_0
termcolor anaconda/pkgs/main/win-64::termcolor-1.1.0-py37_1
The following packages will be SUPERSEDED by a higher-priority channel:
ca-certificates pkgs/main --> anaconda/pkgs/main
certifi pkgs/main --> anaconda/pkgs/main
conda pkgs/main --> anaconda/pkgs/main
openssl pkgs/main --> anaconda/pkgs/main
Proceed ([y]/n)?
测试:
import tensorflow as tf
# Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))
结果如下:
2019-04-09 09:43:51.546292: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2019-04-09 09:43:51.774686: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 960M major: 5 minor: 0 memoryClockRate(GHz): 1.176
pciBusID: 0000:01:00.0
totalMemory: 4.00GiB freeMemory: 3.34GiB
2019-04-09 09:43:51.785557: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-04-09 09:43:53.083262: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-04-09 09:43:53.092130: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0
2019-04-09 09:43:53.096845: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N
2019-04-09 09:43:53.102709: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3050 MB memory) -> physical GPU (device: 0, name: GeForce GTX 960M, pci bus id: 0000:01:00.0, compute capability: 5.0)
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 960M, pci bus id: 0000:01:00.0, compute capability: 5.0
2019-04-09 09:43:53.121080: I tensorflow/core/common_runtime/direct_session.cc:317] Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 960M, pci bus id: 0000:01:00.0, compute capability: 5.0
MatMul: (MatMul): /job:localhost/replica:0/task:0/device:GPU:0
2019-04-09 09:43:53.134660: I tensorflow/core/common_runtime/placer.cc:1059] MatMul: (MatMul)/job:localhost/replica:0/task:0/device:GPU:0
a: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2019-04-09 09:43:53.141017: I tensorflow/core/common_runtime/placer.cc:1059] a: (Const)/job:localhost/replica:0/task:0/device:GPU:0
b: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2019-04-09 09:43:53.149598: I tensorflow/core/common_runtime/placer.cc:1059] b: (Const)/job:localhost/replica:0/task:0/device:GPU:0
[[22. 28.]
[49. 64.]]
安装完成