数学
zhangphil
zhangphil@live.com
展开
-
高等数学-线性代数:正交投影和正交分量
高等数学-线性代数:正交投影和正交分量练习原创 2021-06-10 23:04:50 · 1216 阅读 · 0 评论 -
高等数学-线性代数:矩阵对角化
高等数学-线性代数:矩阵对角化【练习】原创 2021-06-08 23:17:49 · 479 阅读 · 0 评论 -
高等数学-线性代数:已知特征值,求解特征空间的特征向量
高等数学-线性代数:已知特征值,求解特征空间的特征向量[练习]原创 2021-06-07 23:07:59 · 14014 阅读 · 0 评论 -
高等数学-线性代数:特征向量概念演示
高等数学-线性代数:特征向量概念演示原创 2021-06-05 01:21:24 · 400 阅读 · 0 评论 -
高等数学-线性代数:马尔可夫链与稳态向量
高等数学-线性代数:马尔可夫链与稳态向量原创 2021-06-02 00:46:13 · 2134 阅读 · 0 评论 -
高等数学-线性代数:特征向量与差分方程的连接
高等数学-线性代数:特征向量与差分方程的连接原创 2021-06-06 23:07:13 · 467 阅读 · 0 评论 -
高等数学-线性代数:差分方程到一阶方程组
练习,线性代数:差分方程到一阶方程组原创 2021-06-01 00:04:22 · 1506 阅读 · 0 评论 -
行列式稀疏矩阵余因子展开,线性代数,数学
原创 2020-08-20 23:05:24 · 1885 阅读 · 0 评论 -
余因子展开练习,线性代数,数学
原创 2020-08-18 23:12:50 · 2733 阅读 · 0 评论 -
线性代数求解矩阵的逆两种方法,Python,numpy,数学
假设有矩阵:求该矩阵的逆:import numpy as npif __name__ == '__main__': a = np.array([[1, 0, 0], [0, 1, 0], [-5, -5, 1]]) print(np.linalg.inv(a)) A = np.matrix(a) print(A.I)输出:[[ 1. -0. -0.] [ 0. 1. 0.] [ 5. 5. 1.]][[ 1. -0. -..原创 2020-07-03 00:34:00 · 1824 阅读 · 0 评论 -
隐函数快速微分法
原创 2020-01-21 00:12:22 · 3522 阅读 · 0 评论 -
偏导数求导次序问题
原创 2020-01-19 23:07:59 · 6108 阅读 · 0 评论 -
sympy解二元函数偏导数,Python
from sympy import *if __name__ == '__main__': # 函数表达式变量 x, y = symbols('x y') # 二元函数表达式 f = x ** 2 + 3 * x * y + y - 1 # f关于x的偏导数,y是常量 fx = diff(f, x) print(fx) #...原创 2020-01-18 00:55:05 · 4325 阅读 · 0 评论 -
连续任意函数平均(中)值的积分简单证明
原创 2019-12-30 23:06:11 · 2272 阅读 · 0 评论 -
ReLU激活函数(线性整流函数),Python
ReLU激活函数也叫线性整流函数,ReLU是Rectified Linear Unit(ReLU)的简拼。 import numpy as npimport matplotlib.pyplot as plotdef relu(x): return np.maximum(0, x)if __name__ == "__main__": a = np.arange(...原创 2019-12-02 23:07:18 · 5459 阅读 · 0 评论 -
线性代数,点积,numpy,Python
import numpy as npif __name__ == "__main__": a = np.array([1, 2, 3, 4, 5]) b = a.T print(a.dot(b)) print('---') c = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) print(c) d =...原创 2019-11-25 23:17:28 · 323 阅读 · 0 评论 -
numpy expand_dims,Python
import numpy as npif __name__ == "__main__": LEN = 6 print('-----') print('a') a = [0, 1, 2, 3, 4, 5] a = np.array(a).reshape(2, 3) print(a) print(a.shape) print(a....原创 2019-11-24 23:18:42 · 567 阅读 · 0 评论 -
AI:深度学习中的激活函数sigmoid函数,Python
sigmoid函数又叫Logistic函数,S函数(因为其形状为S型)。函数定义:函数的基本性质:1,定义域:(−∞,+∞)2,值域:(−1,1)3,函数在定义域内为连续和光滑函数Python代码绘制一个:import numpy as npimport matplotlib.pyplot as plt#定义sigmoid函数def sigmoid(x):...原创 2019-11-19 23:23:48 · 1346 阅读 · 0 评论 -
线性代数:Python求解矩阵的逆
用Python求解线性代数中矩阵的逆:import numpy as npif __name__ == '__main__': a = np.array([[3, 4], [5, 6]]) b = np.linalg.inv(a) print(b)输出:[[-3. 2. ] [ 2.5 -1.5]]再来一例:P...原创 2019-10-17 23:42:53 · 2151 阅读 · 0 评论 -
非负项级数积分法MATLAB
非负项级数积分法MATLAB定理:计算过程可由MATLAB完成:syms n f; f=1/n^2; L=limit(f,n,+inf)A=int(f,n,[1,+inf])S=symsum(f,n,1,+inf) L = 0 A = 1 S = pi^2/6级数和为:pi^2/6原创 2018-01-10 15:04:42 · 1168 阅读 · 0 评论 -
反常积分收敛和发散性质MATLAB
反常积分收敛和发散性质MATLAB反常积分发散或收敛性质判别的定理:例如:MATLAB计算反常积分:syms x f1 f2; f1=1/(x^2); e1=ezplot(f,[0,10]); set(e1,'Color','r','LineWidth',1); hold on; f2=1/(1+x^2); e2=ezplot(原创 2018-01-10 10:30:27 · 6080 阅读 · 0 评论 -
无界不连续函数积分MATLAB
无界不连续函数积分MATLABMATLAB的处理很简单:syms x f; f=1/x^(1/2); e=ezplot(f,[0,1]); set(e,'Color','r','LineWidth',0.5); grid on; hold on; S=int(f,[0,1]) S = 2图:计算结果:S原创 2018-01-10 09:40:14 · 3641 阅读 · 0 评论 -
AI神经网络激活函数sigmoid及matlab的sigmf
AI神经网络激活函数sigmoid及matlab的sigmf神经网络中引入激活函数sigmoid作用是逻辑回归(logistic regression),引入非线性化。数学中的标准sigmoid输出范围是(0,1)。sigmoid的数学定义:在matlab中,对于sigmoid的定义实现是sigmf,但是sigmf包含多个参数:用MATLAB跑出不同的sigmoid函数曲线:x1=-10:0.1:原创 2017-12-15 10:52:22 · 9514 阅读 · 0 评论 -
Android/iOS及设计中ARGB颜色值百分比透明度换算
Android/iOS及设计中ARGB颜色值百分比透明度换算设计上经常要求对一个颜色值进行一定百分比的透明度,比如给定一个颜色0xFF0000FF(蓝色)要求80%透明,该如何处理呢?80%透明的蓝色值是多少呢?常见的颜色是RGB表示的,就比如上面的蓝色0xFF0000FF,这个颜色值是16进制表示的,其中0x后面接着的两个16进制数字‘FF’就是ARGB中的‘A’,即alpha。A表示该颜色的不...原创 2018-05-12 20:00:32 · 6180 阅读 · 0 评论 -
Python求解线性代数方程组
例如线性代数方程组:import numpy as np# m代表系数矩阵。m = np.array([[1, -2, 1], [0, 2, -8], [-4, 5, 9]])# v代表常数列v = np.array([0, 8, -9])# 解线性代数。r = np.linalg.solve(m, v)...原创 2019-10-14 23:02:47 · 4211 阅读 · 0 评论 -
线性代数-矩阵方程应用:配平化学方程式
线性代数-矩阵方程应用:配平化学方程式原创 2019-12-16 23:02:35 · 5405 阅读 · 1 评论 -
线性代数:矩阵变换-投影变换
原创 2019-12-09 23:35:31 · 5788 阅读 · 0 评论 -
线性代数:剪切变换
原创 2019-10-26 23:30:29 · 6325 阅读 · 0 评论 -
线性代数:行列法则Python计算AB矩阵乘法
Python代码:import numpy as npif __name__ == '__main__': a = np.array([[2, -5, 0], [-1, 3, -4], [6, -8, -7], [-3, 0, 9]]) b = np.array([[4, -6], [7, 1], [3, 2]]) print(np.dot(a, b)...原创 2019-10-16 23:09:43 · 2969 阅读 · 0 评论 -
MATLAB无穷大上的反常积分
MATLAB无穷大上的反常积分MATLAB代码一样可以计算反常积分:syms x f; f=log(x) / x^2; e=ezplot(f,[1,10]); set(e,'Color','r','LineWidth',0.5); grid on; hold on; S=int(f,[1,+inf])结果图:MATLAB计算的结果:S =原创 2018-01-09 16:57:07 · 13415 阅读 · 0 评论 -
MATLAB计算Integration by parts积分
MATLAB计算Integration by parts积分注意案例中的对原积分方程的公式分部处理技巧。MATLAB计算过程比较简单,代码:syms x f; f=x*exp(-x); e=ezplot(f,[0,4]); set(e,'Color','r','LineWidth',0.5);grid on; hold on;int(f,[0,4])结果图:MATL原创 2018-01-08 14:13:04 · 1919 阅读 · 0 评论 -
Integration by parts积分数学公式推导及图形解释
Integration by parts积分数学公式推导及图形解释(一)Integration by parts数学公式推导首先看Integration by parts的数学定义:下面开始推导上述公式。微分数学中的已知公式: (等式1)对(等式1)两边同时进行积分运算(以x坐标轴)得到: (等式2)进一步化简和整理(等式2)可得: (等式3)又因为: (等式4)把(等式4)代入(等式3)中,可得原创 2018-01-08 11:23:41 · 16867 阅读 · 0 评论 -
黎曼积分解多条曲线围成的面积:MATLAB
黎曼积分解多条曲线围成的面积:MATLAB假设f(x)=-x^2+2与g(x)=-x两条曲线,两条曲线相交于两点,分别是(-1,1)和(2,-2),如图,红色曲线是f(x),绿色线是g(x):红色曲线和绿色曲线所围成的面积可由黎曼积分求解,显然,积分下限是-1,上限是2:MATLAB代码:syms x f g F; f=-x.^2+2; e1=ezplot(f,[-2,3]); se原创 2018-01-02 10:19:19 · 5351 阅读 · 0 评论 -
机器学习之线性回归的最小二乘法求解
机器学习之线性回归的最小二乘法求解假设现在一个普通的一阶线性方程,y=2*x+2*t。t是随机噪音,生成的散列点(x,y)会沿直线y=2*x上下摆动。利用最小二乘法做一次简单的一阶“曲线”拟合。用matlab做数据实验:t=randn(1,101); x=[-10:0.2:10]; y=2*x+t*2; s=scatter(x,y); s.LineWidth = 0.6;原创 2017-12-18 09:38:09 · 1174 阅读 · 0 评论 -
线性化微分数学解释Einstein狭义相对论质能方程E=MC^2
线性化微分数学解释Einstein狭义相对论质能方程E=MC^2要理解爱因斯坦在狭义相对论中的质能方程是如何推导出来的,需要先了解数学中的微分方程及其线性化方程的知识。现在先从最简单的微分方程开始。以简单的曲线方程y=x*x和它的切线方程为例。假设取y=x*x上一点(1,1),过(1,1)点的切线方程很容易求得,根据一般的过曲线上点(a,f(a))的切线方程公式:f(x)=f’(a)(x-a)+f原创 2017-12-25 20:46:28 · 6805 阅读 · 14 评论 -
黎曼积分求解可微曲线的弧线长度
黎曼积分求解可微曲线的弧线长度假设曲线y=f(x)在区间[a,b]内光滑、可微且连续。那么可以根据微积分求解y=f(x)在a如图:从微分的思想入手建立数学函数式,假设s为曲线上(x,f(x))到(x+dx,f(x+dx))两点连线。这两点在水平方向的长度为dx,在垂直方向的y坐标轴长度为dy,根据直角三角形的勾股定理可知:其中,由f’(x)=dy/dx,得到dy =f’(x) dx从而:即ds的长原创 2017-12-31 00:22:15 · 5581 阅读 · 0 评论 -
Machine Learning 之Logistic回归算法中最小二乘法的Matlab曲线拟合
Machine Learning 之Logistic回归算法中最小二乘法的Matlab曲线拟合逻辑回归是机器学习(Machine Learning)中常见的机器学习算法,在处理逻辑回归(Logistic Regression)离散数据点集时,最常用的算法是最小二乘法。古代欧洲没有“平方”的叫法,“二乘”其实就是平方。逻辑回归是相对于线性回归而言,线性回归可以较好拟合连续值。但是现实世界中的数据样本原创 2017-12-15 19:14:54 · 7180 阅读 · 2 评论 -
经济金融领域简单数学建模和分析:MATLAB成本曲线方程和销售收入直线方程
经济金融领域简单数学建模和分析:MATLAB成本曲线方程和销售收入直线方程MATLAB代码:x=[0:0.1:5]; y=9*x; plot(x,y,'r','LineWidth',0.5)hold on;y=x.^3-6*x.^2+15*x;plot(x,y,'b','LineWidth',0.5)hold on;grid on;结果如图1:根据数学图形进行经济现象分析。原创 2017-12-24 16:28:38 · 8109 阅读 · 0 评论 -
matlab三维山峰/山脉/山地曲面数据图
matlab三维山峰/山脉/山地曲面数据图可以使用peaks函数。比如直接peaks(80):peaks(80) z = 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ... - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ... - 1/3*exp(-(x+1).^2 - y.^2) peaks(80)的三维数据原创 2017-12-15 14:22:32 · 22014 阅读 · 1 评论 -
Rolle中值定理的两个数学推论证明
Rolle中值定理的两个数学推论证明中值定理的两个数学推论的证明过程,体现的数学思想比较有趣,我把它备忘记录下来。Rolle中值定理的数学推论1:简单的说吧,就是,假设I区间可微、连续,如果f’(x)=0,那么f(x)=C,C为常数。可以这么理解,比如常见的常数函数f(x)=2这种常数方程,在连续可微的区间I内,永远f’(x)=0,那么f(x)一定是一个常数。证明过程还是要利用中值定理:取x1,x原创 2017-12-23 14:50:45 · 4693 阅读 · 0 评论