
人工智能,深度学习,机器学习
人工智能(Artificial Intelligence)。深度学习(Deep Learning)。机器学习(Machine Learning)。数学。
zhangphil
zhangphil@live.com
展开
-
CNN神经网络猫狗分类经典案例,深度学习过程中间层激活特征图可视化
AI:CNN神经网络猫狗分类经典案例,深度学习过程中间层激活特征图可视化基于前文https://zhangphil.blog.csdn.net/article/details/103581736 ,这一次把前文神经网络在深度学习过程中,中间层的每一层激活的特征图可视化展现出来(中间层激活可视化),取前8层# 深度学习过程中每一层的神经网络激活图。def visible():...原创 2019-12-18 23:02:34 · 3979 阅读 · 1 评论 -
CNN神经网络猫狗分类经典案例
AI:CNN神经网络猫狗分类经典案例猫狗的训练数据可以在kaggle下载:https://www.kaggle.com/tongpython/cat-and-dog/data本例使用ImageDataGenerator在迭代生成训练数据时候,需要把训练数据和验证,测试数据分类放置到data下面三个不同目录文件夹下。如图:因为有猫和狗两类,所有在data/train目录下,...原创 2019-12-17 23:58:20 · 10879 阅读 · 2 评论 -
训练神经网络模型过程中batch_size,steps_per_epoch,epochs意义
AI:训练神经网络模型过程中batch_size,steps_per_epoch,epochs意义batch_size:批大小。batch_size是计算效率和内存容量之间的平衡参数。若为高性能GPU,可以设置更大的batch_size值。神经网络训练过程中,随机梯度下降时,使用梯度的数量,即每次使用batch_size个数据样本来训练、更新权重参数。1次迭代等于使用batch_size个样...原创 2019-12-08 23:44:19 · 15270 阅读 · 3 评论 -
AI:卷积神经网络CNN中全连接层产生和意义
AI:卷积神经网络CNN中全连接层产生和意义全连接层(Fully Connected Layers,FC)在卷积神经网络中相当于分类器的作用。全连接层是怎么产生呢?FC层存在的意义是什么?先看看如何把一个3x3x5的最后一层卷积的输出feature map(特征图),转换成FC中1x4096的形式。其实相当于又做了一层卷积,但是这次的卷积核尺寸是3X3X5(filter,或者称之为滤...原创 2019-12-06 23:56:25 · 8291 阅读 · 0 评论 -
神经网络在深度学习过程中每层训练的网络参数容量数量计算推导
AI:神经网络在深度学习过程中每层训练的网络参数容量数量计算推导,Python在深度学习的卷积神经网络中,训练的参数的计算公式为:公式1:计算每一层神经网络在深度学习过程中的训练参数个数的常规公式2为:total_params_count = (filter_height * filter_width * input_channels + 1) * number_of_...原创 2019-12-05 23:03:13 · 5747 阅读 · 0 评论 -
AI:神经网络的数据预处理值标准化,Python
import numpy as npif __name__ == "__main__": a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]).astype(float) print('平均值') print(a.mean(axis=0)) print('方差') print(np.var(a)) print('标...原创 2019-12-03 23:07:11 · 954 阅读 · 0 评论 -
AI:神经网络IMDB电影评论二分类模型训练和评估
AI:Keras神经网络IMDB电影评论二分类模型训练和评估,pythonimport kerasfrom keras.layers import Densefrom keras import modelsfrom keras import optimizersfrom keras.datasets import imdbfrom keras import lossesimpor...原创 2019-12-01 23:02:19 · 1163 阅读 · 0 评论 -
AI:普通列表数组转化为one-hot编码的numpy数组矩阵
AI:普通列表数组转化为one-hot编码的numpy数组矩阵import numpy as npimport kerasdef dummy_data(): list1 = [0, 1, 2] list2 = [3, 4, 5, 6] list3 = [7, 8] list4 = [9] list = [] list.append(...原创 2019-11-29 23:02:30 · 1588 阅读 · 0 评论 -
傅里叶级数及奇欧函数的延拓
傅里叶级数及奇欧函数的延拓傅里叶级数的定义出发,求解函数f(x)的解。需要注意在对奇欧性函数延拓求解时的转换:原创 2018-01-23 15:20:45 · 10726 阅读 · 0 评论 -
Taylor级数定义和推演过程
Taylor级数定义和推演过程定义:从定义出发的推演过程:原创 2018-01-12 11:26:33 · 1776 阅读 · 0 评论 -
比值法判定无穷级数收敛/发散性质MATLAB
比值法判定无穷级数收敛/发散性质MATLAB定理:分析:收敛抑或发散?MATLAB:syms n f; f=(2^n+5)/3^n; L=limit(f,n,+inf)S=symsum(f,n,0,+inf) L = 0 S = 21/2原创 2018-01-10 16:07:54 · 10482 阅读 · 0 评论 -
非负项级数积分法MATLAB
非负项级数积分法MATLAB定理:计算过程可由MATLAB完成:syms n f; f=1/n^2; L=limit(f,n,+inf)A=int(f,n,[1,+inf])S=symsum(f,n,1,+inf) L = 0 A = 1 S = pi^2/6级数和为:pi^2/6原创 2018-01-10 15:04:42 · 1189 阅读 · 0 评论 -
反常积分收敛和发散性质MATLAB
反常积分收敛和发散性质MATLAB反常积分发散或收敛性质判别的定理:例如:MATLAB计算反常积分:syms x f1 f2; f1=1/(x^2); e1=ezplot(f,[0,10]); set(e1,'Color','r','LineWidth',1); hold on; f2=1/(1+x^2); e2=ezplot(原创 2018-01-10 10:30:27 · 6192 阅读 · 0 评论 -
无界不连续函数积分MATLAB
无界不连续函数积分MATLABMATLAB的处理很简单:syms x f; f=1/x^(1/2); e=ezplot(f,[0,1]); set(e,'Color','r','LineWidth',0.5); grid on; hold on; S=int(f,[0,1]) S = 2图:计算结果:S原创 2018-01-10 09:40:14 · 3757 阅读 · 0 评论 -
MATLAB无穷大上的反常积分
MATLAB无穷大上的反常积分MATLAB代码一样可以计算反常积分:syms x f; f=log(x) / x^2; e=ezplot(f,[1,10]); set(e,'Color','r','LineWidth',0.5); grid on; hold on; S=int(f,[1,+inf])结果图:MATLAB计算的结果:S =原创 2018-01-09 16:57:07 · 13689 阅读 · 0 评论 -
MATLAB计算Integration by parts积分
MATLAB计算Integration by parts积分注意案例中的对原积分方程的公式分部处理技巧。MATLAB计算过程比较简单,代码:syms x f; f=x*exp(-x); e=ezplot(f,[0,4]); set(e,'Color','r','LineWidth',0.5);grid on; hold on;int(f,[0,4])结果图:MATL原创 2018-01-08 14:13:04 · 2020 阅读 · 0 评论 -
Integration by parts积分数学公式推导及图形解释
Integration by parts积分数学公式推导及图形解释(一)Integration by parts数学公式推导首先看Integration by parts的数学定义:下面开始推导上述公式。微分数学中的已知公式: (等式1)对(等式1)两边同时进行积分运算(以x坐标轴)得到: (等式2)进一步化简和整理(等式2)可得: (等式3)又因为: (等式4)把(等式4)代入(等式3)中,可得原创 2018-01-08 11:23:41 · 17187 阅读 · 0 评论 -
微分方程数值分析基础:Euler法
微分方程数值分析基础:Euler法Euler法作为数值分析的一种方法,主要解决微分方程在求出精确公式没有必要,求不到或者非常困难情况下有用。为数值分析提供了一种渐变的分析手段,但是也要看到,Euler法在多次轮回循环后,极可能积累过量误差,导致计算结果不可靠。误差累积现象和附录1的梯形逼近相似。附录:1,《数值积分的梯形逼近》链接:http://blog.csdn.net/zhangphil/ar原创 2018-01-05 12:32:24 · 9115 阅读 · 0 评论 -
Newton冷却定理微分数学公式推导
Newton冷却定理数学公式推导原创 2018-01-04 16:33:01 · 13058 阅读 · 4 评论 -
指数变化律在Willard Libby的C-14年代测定法中的运用
指数变化律在Willard Libby的C-14年代测定法中的运用指数变化律可以计算出放射性元素的半衰期关键常数k参数值获得k后,就可以通过指数变化律计算初始值t,t也极为开始的年限这里面的数学建模思想有一定借鉴意义。原创 2018-01-04 16:18:57 · 1704 阅读 · 0 评论 -
数学建模常用的指数变化律
数学建模常用的指数变化律最终,导出一个一般性的规律:指数变化律在数学建模中比较常用。另外需要注意本例中数学公式推导的过程,有一些技巧性的东西可以借鉴。原创 2018-01-04 15:37:55 · 2877 阅读 · 0 评论 -
积分计算两条曲线围绕y坐标轴旋转形成的立体体积
积分计算两条曲线围绕y坐标轴旋转形成的立体体积和附录文章1类似,计算两条曲线y=x^2和y=2x围绕y坐标轴形成的立方体体积,首先要计算积分的上限和下限,根据两者相交的点求出[0,4]。外层大圆R(y)=y^(1/2)和内层小圆r(y)=y/2的面积,把两者相减,得到中空圆环的面积,如图:然后根据体积的积分公式:在y坐标轴方向以dy做积分计算。最后得到体积V的积分计算式:MATLAB计算:syms原创 2018-01-03 14:13:17 · 34459 阅读 · 0 评论 -
积分计算曲线围绕X轴旋转形成的立体体积
积分计算曲线围绕X轴旋转形成的立体体积若曲线y=x^2+1和直线y=-x+3围成的区域,再绕X坐标轴旋转一周,形成一个立体,计算该立体的体积。如图:先计算出所要求的在X坐标轴的积分上下限为[-2,1]。仔细分析可知,外部的大圆半径为R(x)=-x+3,r(x)=x^2+1。大圆R(x)-r(x)即为实际围成的面积:根据立体面积积分公式: 其中,A(x)为立体截面面积。可知问题最终求解的体积为:用m原创 2018-01-03 12:26:42 · 37862 阅读 · 0 评论 -
数值积分的梯形逼近及误差分析
数值积分的梯形逼近及误差分析引入梯形逼近的原因是,在求解一些函数的反导数时候,过程极为复杂甚至可能就不可能有简单的数学表达式,那么就需要把函数f的积分切成n个连续的小梯形,计算这n个连续的小梯形的黎曼和,从而得到积分。如图:在区间[a,b],把这段区间切分成等长为h的若干个小梯形,那么可以把[a,b]的积分: 转换为求解这些梯形面积和的问题。梯形的面积计算无疑非常简单:h=(b-a)/n显然梯形逼原创 2018-01-03 10:12:37 · 15993 阅读 · 1 评论 -
积分解多条曲线围成面积且具有不同边界MATLAB
积分解多条曲线围成面积且具有不同边界MATLAB如图所示,f(x)=x^(1/2)与g(x)=x-2围成的图形,如果求所围成面积处于x坐标轴上方的部分,则直接使用黎曼积分(f(x)-gx)dx不妥。因此,把这一问题转换为求解两部分面积的之和的问题,注意这里面体现的数学思想。(第一部分面积)s1: f(x)=x^(1/2)在[0,2]区间内与x坐标轴围成的面积。直接计算f(x)dx在[0,2]的积分原创 2018-01-02 11:03:57 · 4707 阅读 · 0 评论 -
黎曼积分解多条曲线围成的面积:MATLAB
黎曼积分解多条曲线围成的面积:MATLAB假设f(x)=-x^2+2与g(x)=-x两条曲线,两条曲线相交于两点,分别是(-1,1)和(2,-2),如图,红色曲线是f(x),绿色线是g(x):红色曲线和绿色曲线所围成的面积可由黎曼积分求解,显然,积分下限是-1,上限是2:MATLAB代码:syms x f g F; f=-x.^2+2; e1=ezplot(f,[-2,3]); se原创 2018-01-02 10:19:19 · 5451 阅读 · 0 评论 -
黎曼积分求解可微曲线的弧线长度
黎曼积分求解可微曲线的弧线长度假设曲线y=f(x)在区间[a,b]内光滑、可微且连续。那么可以根据微积分求解y=f(x)在a如图:从微分的思想入手建立数学函数式,假设s为曲线上(x,f(x))到(x+dx,f(x+dx))两点连线。这两点在水平方向的长度为dx,在垂直方向的y坐标轴长度为dy,根据直角三角形的勾股定理可知:其中,由f’(x)=dy/dx,得到dy =f’(x) dx从而:即ds的长原创 2017-12-31 00:22:15 · 5696 阅读 · 0 评论 -
MATLAB计算黎曼积分曲线围成的面积
MATLAB计算黎曼积分曲线围成的面积假设一个曲线方程f(x)= x.^3-x.^2-2*x。f(x)与笛卡尔坐标x坐标轴有交点,如图:计算该曲线与x(1设所求面积为S,那么:但是f(x)与x坐标轴相交形成的两块面积,在x区域[-1,0]为正,[0,2]为负,因此要对[0,2]区域的面积分开计算,分别为:与然后取绝对值相加。matlab: syms x f;f=x.^3-x.^2-2*x;li原创 2017-12-29 20:11:01 · 14542 阅读 · 0 评论 -
Newton-Raphson切线法解高次方程近似根
Newton-Raphson切线法解高次方程近似根 对于一般的一次,二次方程来说,求解方程的根比较简单。但是对于四次、五次甚至更高次方程,求解方程的f(x)=0的根变得十分困难甚至不可能完成。为此Newton(牛顿)在1736年 Method of Fluxions 中发表文章提出一种解决方案,事实上,牛顿所提出的这种方案,另一位数学家Joseph Raphson于1690年已经发现。为此,牛顿法原创 2017-12-27 15:58:54 · 7440 阅读 · 0 评论 -
线性化微分数学解释Einstein狭义相对论质能方程E=MC^2
线性化微分数学解释Einstein狭义相对论质能方程E=MC^2要理解爱因斯坦在狭义相对论中的质能方程是如何推导出来的,需要先了解数学中的微分方程及其线性化方程的知识。现在先从最简单的微分方程开始。以简单的曲线方程y=x*x和它的切线方程为例。假设取y=x*x上一点(1,1),过(1,1)点的切线方程很容易求得,根据一般的过曲线上点(a,f(a))的切线方程公式:f(x)=f’(a)(x-a)+f原创 2017-12-25 20:46:28 · 6910 阅读 · 14 评论 -
经济金融领域简单数学建模和分析:MATLAB成本曲线方程和销售收入直线方程
经济金融领域简单数学建模和分析:MATLAB成本曲线方程和销售收入直线方程MATLAB代码:x=[0:0.1:5]; y=9*x; plot(x,y,'r','LineWidth',0.5)hold on;y=x.^3-6*x.^2+15*x;plot(x,y,'b','LineWidth',0.5)hold on;grid on;结果如图1:根据数学图形进行经济现象分析。原创 2017-12-24 16:28:38 · 8247 阅读 · 0 评论 -
Rolle中值定理的两个数学推论证明
Rolle中值定理的两个数学推论证明中值定理的两个数学推论的证明过程,体现的数学思想比较有趣,我把它备忘记录下来。Rolle中值定理的数学推论1:简单的说吧,就是,假设I区间可微、连续,如果f’(x)=0,那么f(x)=C,C为常数。可以这么理解,比如常见的常数函数f(x)=2这种常数方程,在连续可微的区间I内,永远f’(x)=0,那么f(x)一定是一个常数。证明过程还是要利用中值定理:取x1,x原创 2017-12-23 14:50:45 · 4776 阅读 · 0 评论 -
Matlab计算微分方程曲线求导及过曲线上点的切线方程
Matlab计算微分方程曲线求导及过曲线上点的切线方程求解f(x)=x^2一元二次方程上某点的切线方程并绘制出方程的切线图。点(4,f(4))是曲线方程f(x)上的一个点,求出该点的切线并绘制出来。画出f(x)= x^2方程曲线。对f(x)进行求导得到f’(x)=2*x。根据一般的过点(a,b)的斜切线方程求出切线方程:m为导数值。变形得到过(4,f(4))的切线方程:matlab绘出的图:红色线原创 2017-12-19 16:33:49 · 14386 阅读 · 0 评论 -
Machine Learning:最小二乘法数学原理及简单推导
Machine Learning:最小二乘法数学原理及简单推导假设给定一系列散列值(数据集)记为D={(x1,y1),(x2,y2),(x3,y3),,,(xn,yn)},找到一个函数y=ax+b(也可记得f(x)=ax+b)使得f(x)函数尽可能拟合D。求解函数f(x)的方法很多种。最小二乘法寻找拟合函数f(x)的原理和思想关键:平方差之和最小,即使得Q最小。即求解最小值。因为(x1,y1),(原创 2017-12-18 15:21:44 · 9328 阅读 · 1 评论 -
Machine Learning 之Logistic回归算法中最小二乘法的Matlab曲线拟合
Machine Learning 之Logistic回归算法中最小二乘法的Matlab曲线拟合逻辑回归是机器学习(Machine Learning)中常见的机器学习算法,在处理逻辑回归(Logistic Regression)离散数据点集时,最常用的算法是最小二乘法。古代欧洲没有“平方”的叫法,“二乘”其实就是平方。逻辑回归是相对于线性回归而言,线性回归可以较好拟合连续值。但是现实世界中的数据样本原创 2017-12-15 19:14:54 · 7260 阅读 · 2 评论 -
Matlab验算拉格朗日中值定理
拉格朗日中值定理的定义:如果函数f(x)在[a,b]上连续,且在(a,b)可导,则函数f(x)上必有一点p,使得:(f(b)-f(a) )/(b-a)=f'(p)。该定理可以认为如果函数满足拉格朗日中值定理所有条件,那么f(x)上两点连线构成的直线,与过f(p)点的直线平行。MATLAB代码:syms x y; y=x.^2; %绘出y=x*x曲线,黑色线。e1=ezplot(y,[0原创 2017-12-20 16:02:25 · 5588 阅读 · 0 评论 -
人工智能中卷积神经网络基本原理综述
人工智能Artificial Intelligence中卷积神经网络Convolutional Neural Network基本原理综述人工智能(Artificial Intelligence,简称AI)的Deep Learning(深度学习)通过机器学习,把某一层的输出output当做下一层的输入input。在人工智能中,认为output是机器通过深度学习获得的某种“智慧”。深度学习(Deep原创 2017-12-11 16:10:00 · 33081 阅读 · 11 评论 -
人工智能AI常见的经典K-means聚类算法原理和工作过程
人工智能AI常见的经典K-means聚类算法原理和工作过程K-means聚类算法亦称K聚类均值算法,K-means算法是硬聚类算法中的一种。聚类算法是一类无监督机器学习。K-means算法是计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。K-means算法是典型的基于距离的聚类算法,以距离作为相似性的评价标准,认为两个对象的距离越近,其相似度就越大。物以类聚,人以群分。K均值算法认为簇原创 2017-12-12 16:55:12 · 7578 阅读 · 3 评论 -
机器学习之线性回归的最小二乘法求解
机器学习之线性回归的最小二乘法求解假设现在一个普通的一阶线性方程,y=2*x+2*t。t是随机噪音,生成的散列点(x,y)会沿直线y=2*x上下摆动。利用最小二乘法做一次简单的一阶“曲线”拟合。用matlab做数据实验:t=randn(1,101); x=[-10:0.2:10]; y=2*x+t*2; s=scatter(x,y); s.LineWidth = 0.6;原创 2017-12-18 09:38:09 · 1216 阅读 · 0 评论 -
AI神经网络激活函数sigmoid及matlab的sigmf
AI神经网络激活函数sigmoid及matlab的sigmf神经网络中引入激活函数sigmoid作用是逻辑回归(logistic regression),引入非线性化。数学中的标准sigmoid输出范围是(0,1)。sigmoid的数学定义:在matlab中,对于sigmoid的定义实现是sigmf,但是sigmf包含多个参数:用MATLAB跑出不同的sigmoid函数曲线:x1=-10:0.1:原创 2017-12-15 10:52:22 · 9655 阅读 · 0 评论