正弦实时数据库(SinRTDB)的使用(7)-历史统计查询

前文已经将正弦实时数据库的使用进行了介绍,需要了解的可以先看下面的博客:

正弦实时数据库(SinRTDB)的安装

正弦实时数据库(SinRTDB)的使用(1)-使用数据发生器写入数据

正弦实时数据库(SinRTDB)的使用(2)-接入OPC DA的数据

正弦实时数据库(SinRTDB)的使用(3)-用户管理

正弦实时数据库(SinRTDB)的试用(4)-快照查询

正弦实时数据库(SinRTDB)的使用(5)-历史数据查询

正弦实时数据库(SinRTDB)的使用(6)-历史插值查询

若需要试用正弦实时数据库产品的小伙伴欢迎私聊...

还是以正弦实时数据库(SinRTDB)的使用(2)-接入OPC DA的数据 来说,我们查询标签点opcda.ramp2 在时间区间 2024-03-28 18:00:00 到2024-03-28 18:10:00数据为例进行历史统计查询。

原始数据如下:

打开SQL查询窗口,输入查询SQL并执行结果如下:

在上图中,我们查询了测点opcda.ramp2(由.tadid指定)从 '2024-03-28 18:0:0' 到 '2024-03-28 18:10:0' 时间段内(由 start 和 end指定,实际执行时包含开始时间,不包含截止时间) 按一分钟分组(tsrange指定分组时间 m表示单位为分钟)进行统计查询每个区间的数据条数、最大值及最小值。

上面仅仅是一个简单的示例,更多数据筛选、聚合函数的用法请联系我们...

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值