ORC和Parquet的一些简单对比

本文对比了ORC和Parquet在Hive及Impala中的使用效果,包括查询效率和压缩效率。测试表明,对于Impala查询,两者耗时差异不大,Parquet稍快;在压缩效率上,ORC的zlib优于Parquet的gzip。总结建议,Impala查询表可选ORC+zlib,其他表推荐ORC+zlib以优化性能。
摘要由CSDN通过智能技术生成

一、简介

目前我们Hive数仓建表存储格式主要是Parquet+默认压缩,因为Parquet默认压缩是UNCOMPRESSED,大部分场景数据都是很少压缩的,所以对Hive常用的存储格式和压缩算法做了一下测试。

Hive支持的几种文件格式有: TextFile(文本格式),RCFile(行列式文件),SequenceFile(二进制序列化文件),AVRO,ORC(优化的行列式文件)和Parquet 格式,其中使用最多的是ORC和Parquet。下面主要是ORC和Parquet的对比。

1.1 ORC

列式存储
提供了多种索引,可以支持复杂的数据结构
ORC格式的表还支持事务ACID
ORC 的Hive关键配置
ORC 与 Hive 接触的比较紧密,在CDH 6.1.x 版本即 Impala3.x 开始以 experimental feature 支持 ORC 格式

KEY DEFAULT NOTES
orc.compress ZLIB compression = {NONE, ZLIB, SNAPPY}

ORC文件的压缩类型,可选的类型有NONE、ZLIB和SNAPPY,默认值是ZLIB

1.2 Parquet
列式存储
在Hadoop生态圈使用范围广,Hive、Impala、Presto 等各种查询引擎
对Impala支持更好

KEY DEFAULT NOTES
orc.compress UNCOMPRESSED compression = {UNCOMPRESSED, GZIP, SNAPPY}

parquet.compression:默认值为 UNCOMPRESSED,表示页的压缩方式。可以使用的压缩方式有 UNCOMPRESSED、 SNAPPY、GZIP 等。

二、测试环境说明

2.1.集群环境

CDH6.1.0,Hive 2.1.1,impala 3.4.0,集群节点6
cdh-datanode1
cdh-datanode2
cdh-datanode3
cdh-datanode4
cdh-namenode1
cdh-namenode2
相同队列,测试条件相同,查询无并发

2.2 测试数据

测试数据为TPC-H测试数据集+测试环境自有数据集

2.2.1 TPC-H使用

是一系列事务处理和数据库基准测试的规范,TPC-H主要用于BI和决策支持

1)tpch下载

官网www.tpc.org/tpch/ 下载TPCH_Tools.zip

2)解压

unzip TPCH_Tools.zip

3)配置
cd /va
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值