Policy-Based Reinforcement Learning(1)

之前提到过Discount Return:

U_t = R_t + \gamma R_{t+1} + \gamma ^2R_{t+2} + \gamma ^3 R_{t+1} + ...

Action-value Function :

Q_ \pi (s_t,a_t) = E[U_t|S_t = s_t, A_t = a_t]

State-value Function:

V_\pi(s_t) = E_A[Q_\pi (s_t,A)]  (这里将action A积分掉)这里如果策略函数\pi很好,V_\pi就会很大;反之策略函数不好,V_\pi就会很小。

对于离散类型:V_\pi (s_t) = E_A[Q_\pi (s_t,A)] = \sum_{a}^{}\pi (a|s_t) * Q_\pi (s_t, a)

用神经网络\pi (a|s_t;\theta )近似策略\pi (a|s_t)

V_\pi (s_t;\theta ) = \sum_{a}^{}\pi (a|s_t;\theta ) * Q_\pi (s_t, a)

即 学习参数\theta,使得J(\theta ) =E_S[V(S;\theta )]越来越大。这里使用梯度上升的方法,对于一个可观测状态s,更新\theta \leftarrow \theta + \beta \frac{\partial V(s;\theta )}{\partial \theta } 

这里\frac{\partial V(s;\theta )}{\partial \theta }称为策略梯度(Policy Gradient)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值