MCMC (11) --- Markov Chain Monte Carlo (6) --- Gibbs(2)

简单来说,吉布斯抽样是单分量Metropolis-Hastings的特殊情况,特殊在哪哪?

特殊在这个时候

                        q(x,x^{'}) = p(x_{j}^{'} | x_{-j})

这个时候的接收率:

      \alpha (x,x^{'}) = min\begin{Bmatrix} 1, & \frac{p(x^{'})q(x^{'},x)}{p(x)q(x,x^{'})} \end{Bmatrix}                  

                    =min\begin{Bmatrix} 1, & \frac{p(x_{-j}^{'})p(x_{j}^{'}|x_{-j}^{'})p(x_{j}|x_{-j}^{'})}{p(x_{-j})p(x_{j}|x_{-j})p(x_{j}^{'}|x_{-j})} \end{Bmatrix}

   由于\frac{p(x_{I}^{'} | x_{-I}^{'})}{p(x_{I} | x_{-I})} = \frac{p(x^{'})}{p(x)}

          \frac{p(x_{-j}^{'})p(x_{j}|x_{-j}^{'})}{p(x_{-j})p(x_{j}^{'}|x_{-j})} = \frac{p(x)}{p(x^{'})}

带入,能够得到:

\alpha (x, x^{'}) = min\begin{Bmatrix} 1, & 1 \end{Bmatrix} = 1

吉布斯抽样算法过程:

输入:目标概率分布的密度函数p(x),函数f(x);

输出:p(x)的随机样本x_{m+1},x_{m+2},...,x_{n},函数样本均值f_{mn}

参数:收敛步数m,迭代步数n。

(1) 初始化。给出初始样本x^{(0)} = (x_{1}^{(0)}, x_{2}^{(0)},...,x_{k}^{(0)})^{T}

(2) 对i循环执行

设第(i-1)次迭代结束时的样本为x^{(i-1)} = (x_{1}^{(i-1)},x_{2}^{(i-1)},...,x_{k}^{(i-1)})^{T},则第i

次迭代进行如下几步操作:

       a.由满条件分布p(x_{1}|x_{2}^{(i-1)},...,x_{k}^{(i-1)}),抽取x_{1}^{(i)}

       .......

      b.由满条件分布p(x_{j}|x_{1}^{(i)}, ...,x_{j-1}^{(i)}, x_{j+1}^{(i-1)},...,x_{k}^{(i-1)}),抽取x_{j}^{(i)}

      ........

      c.由满条件分布p(x_{k}|x_{1}^{(i)}, ... , x_{k-1}^{(i)}),抽取x_{k}^{(i)}

得到第i次迭代值x^{(i)} = (x_{1}^{(i)},x_{2}^{(i)}, ... ,x_{k}^{(i)})^{T}

(3) 得到样本集合

            {x^{(m+1)},x^{(m+2)},...,x^{(n)}}

(4) 计算

           f_{mn} = \frac{1}{n-m}\sum_{i=m+1}^{n}f(x^{(i)}) 

总结:单分量Metropolis-Hastings算法和吉布斯算法的不同之处在于,前者算法中,抽样会在样本之间移动,但期间可能在某一些样本点停留(由于抽样被拒绝);而在后者算法中,抽样会在样本间持续移动。

吉布斯抽样适合满条件概率分布容易抽样的情况,而单分量Metropolis-Hastings算法适合于满条件概率分布不容易抽样的情况,这时使用容易抽样的条件分布建议分布。

          

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值