设 S , T S,T S,T 都是可重序列
m a x S = ∑ S ⊊ T m i n T ( − 1 ) ∣ T ∣ − 1 maxS=\sum_{S\subsetneq T}minT(-1)^{|T|-1} maxS=∑S⊊TminT(−1)∣T∣−1
m i n S = ∑ S ⊊ T m a x T ( − 1 ) ∣ T ∣ = 1 minS=\sum_{S\subsetneq T}maxT(-1)^{|T|=1} minS=∑S⊊TmaxT(−1)∣T∣=1
设 S , T S,T S,T 都是可重序列
m a x S = ∑ S ⊊ T m i n T ( − 1 ) ∣ T ∣ − 1 maxS=\sum_{S\subsetneq T}minT(-1)^{|T|-1} maxS=∑S⊊TminT(−1)∣T∣−1
m i n S = ∑ S ⊊ T m a x T ( − 1 ) ∣ T ∣ = 1 minS=\sum_{S\subsetneq T}maxT(-1)^{|T|=1} minS=∑S⊊TmaxT(−1)∣T∣=1