关于最短源路径问题

    在计算最短源路径中,涉及到了两个比较重要的算法,即Bellman-Ford算法和Dijkstra算法。Bellman-Ford算法是判断一个有向图里面是否存在负权回路,此算法是运用松弛技术,对每个顶点v,逐步减小从源s到v的最短路径的权的估计值d[v]直至达到实际最短路径的权为止。算法返回TRUE,当且仅当图中不包含从源点可达的负权回路。
源代码如下:
  1. bool fellman(int n)
  2. {
  3.        memset(D,0,sizeof(D));
  4.        Node *link;
  5.        for(int i=0;i<n-1;++i)
  6.        {
  7.              bool f = false;
  8.               for(int j=0;j<n;++j)
  9.               {
  10.                    link = Edg[j];
  11.                    while(link)
  12.                    {
  13.                           if(D[link->to]>D[j]+link->value)
  14.                           {
  15.                                   D[link->to] = D[j] + link->value;
  16.                                   f = true;
  17.                           }
  18.                           link = link->next;
  19.                    }
  20.               }
  21.               if(f == falsereturn true;
  22.        }
  23.        for(int i=0;i<n;++i)
  24.        {
  25.              link = Edg[i];
  26.              while(link)
  27.              {
  28.                     if(D[link->to] > D[i] + link->value) return false;
  29.                     link = link->next;
  30.              }
  31.        }
  32.        return true;
  33. }
Dijkstra算法是用来计算从源点s出发,到其它顶点的最终最短路径的权值。
算法反复的选择具有最短路径估计的顶点,并将其加入到已经选择了的顶点
的集合中,直到所有的顶点都选择完为止。
代码如下:
  1. void Dijkstra(int n)
  2. {
  3.       D[1] = 0;
  4.       int r=0;
  5.       memset(visit,false,sizeof(visit));
  6.       for(int k=1;k<=n;++k)
  7.       {
  8.              double min = 0xfffffff;
  9.              for(int i=1;i<=n;++i)
  10.              {
  11.                     if(!visit[i] && min>D[i])
  12.                     {   
  13.                           min = D[i];
  14.                           r = i;
  15.                     }
  16.              }
  17.              Node *link = Edg[r];
  18.              visit[r] = true;
  19.              while(link)
  20.              {
  21.                     if(!visit[link->to] && D[link->to]>link->value)
  22.                     D[link->to] = link->value;
  23.                     link = link->next;
  24.              }
  25.       }
  26. }
数组D[]中,最终就存储了从顶点出发,到其它n-1个顶点的最小的权值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值