1.PyTorch基础实现代码
import torch
from torch.autograd import Variable
torch.manual_seed(2)
x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
y_data = Variable(torch.Tensor([[0.0], [0.0], [1.0], [1.0]]))
# 初始化
w = Variable(torch.Tensor([-1]), requires_grad=True)
b = Variable(torch.Tensor([0]), requires_grad=True)
epochs = 100
costs = []
lr = 0.1
print('before training,predict of x = 1.5 is :')
print('Y_pred = ', float(w.data * 1.5 + b.data > 0))
# w * x_data
# 1 / (1 + torch.exp(-w * x_data))
# 模型训练
for epoch in range(epochs):
# 计算梯度
A = 1 / (1 + torch.exp(-(w * x_data + b)))
# 逻辑损失函数
J = - torch.mean(y_data * torch.log(A) + (1 - y_data) * torch.log(1 - A))
# 基础类进行正则化,加上L2范数
# J = -torch.mean(y_data * torch.log(A) + (1 - y_data) * torch.log(1 - A)) + alpha * w ** 2
# print(len(J.data))
# costs.append(J.data.numpy()[0])
# 自动反向传播
J.backward()
# 参数更新
w.data = w.data - lr * w.grad.data
w.grad.data.zero_()
b.data = b.data - lr * b.grad.data
b.grad.data.zero_()
# 模型测试
print('after trainning,predict of x = 1.5 is :')
print('Y_pred = ', float(w.data * 1.5 + b.data > 0))
print(w.data, b.data)
结果:
before training,predict of x = 1.5 is :
Y_pred = 0.0
after trainning,predict of x = 1.5 is :
Y_pred = 0.0
tensor([0.6075]) tensor([-0.9949])
2.用PyTorch类实现Logistic regression,torch.nn.module写网络结构
import torch
# from torch import nn
# 第一创建数据
from torch.autograd import Variable # 导入Variable函数进行自动求导,有了Variable PyTorch才能实现自动求导功能
torch.manual_seed(2)
x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
y_data = Variable(torch.Tensor([[0.0], [0.0], [1.0], [1.0]]))
# 定义网络模型
# 先建立一个基类Model,都是从父类torch.nn.Module中继承过来,PyTorch写网络的固定写法
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__() # 初始父类
self.linear = torch.nn.Linear(1, 1) # 输入维度和输出维度都为1
def forward(self, x):
y_pred = self.linear(x)
return y_pred
model = Model() # 实例化
# 定义Loss和优化方法
criterion = torch.nn.BCEWithLogitsLoss() # 损失函数,封装好的逻辑损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 进行优化梯度下降
# optimizer = torch.optim.SGD(model.parmeters(), lr=0.01, weight_decay=0.001)
# #PyTorch类方法正则化方法,添加一个weight_decay参数进行正则化
# before training
hour_var = Variable(torch.Tensor([[2.5]]))
y_pred = model(hour_var)
print("predict (before training) given", 4, "is", float(model(hour_var).data[0][0] > 0.5))
epochs = 40
for epoch in range(epochs):
# 计算grads and cost
y_pred = model(x_data) # x_data 输入数据进入模型中
loss = criterion(y_pred, y_data)
# print(loss.data)
# print('epoch = ', epoch + 1, loss.data[0])
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 优化迭代
# after trining
hour_var = Variable(torch.Tensor([[4.0]]))
y_pred = model(hour_var) # 预测结果
print("predict (after training) given", 4, "is", float(model(hour_var).data[0][0] > 0.5))
结果:
predict (before training) given 4 is 0.0
predict (after training) given 4 is 1.0