PyTorch基础Task3--PyTorch实现Logistic regression

用PyTorch类实现Logistic regression,torch.nn.module写网络结构

用PyTorch类实现Logistic regression
import torch
from torch.autograd import Variable

torch.manual_seed(2)
x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
y_data = Variable(torch.Tensor([[0.0], [0.0], [1.0], [1.0]]))

#初始化
w = Variable(torch.Tensor([-1]), requires_grad=True)
b = Variable(torch.Tensor([0]), requires_grad=True)
epochs = 100
costs = []
lr = 0.1
print("before training, predict of x = 1.5 is:")
print("y_pred = ", float(w.data*1.5 + b.data > 0))

#模型训练
for epoch in range(epochs):
	#计算梯度
	A = 1/(1+torch.exp(-(w*x_data+b))) #逻辑回归函数
	J = -torch.mean(y_data*torch.log(A) + (1-y_data)*torch.log(1-A))  #逻辑回归损失函数
	#J = -torch.mean(y_data*torch.log(A) + (1-y_data)*torch.log(1-A)) +alpha*w**2
	#基础类进行正则化,加上L2范数
	costs.append(J.data)
	J.backward()  #自动反向传播

	#参数更新
	w.data = w.data - lr*w.grad.data
	w.grad.data.zero_()
	b.data = b.data - lr*b.grad.data
	b.grad.data.zero_()

print("after training, predict of x = 1.5 is:")
print("y_pred =", float(w.data*1.5+b.data > 0))
print(w.data, b.data)
torch.nn.module写网络结构
import torch
from torch.autograd import Variable

torch.manual_seed(2)
x_data = Variable(torch.Tensor([[1.0], [2.0], [3.0], [4.0]]))
y_data = Variable(torch.Tensor([[0.0], [0.0], [1.0], [1.0]]))

#定义网络模型
#先建立一个基类Module,都是从父类torch.nn.Module继承过来,Pytorch写网络的固定写法
class Model(torch.nn.Module):
	def __init__(self):
		super(Model, self).__init__()  #初始父类
		self.linear = torch.nn.Linear(1, 1)  #输入维度和输出维度都为1

	def forward(self, x):
		y_pred = self.linear(x)
		return y_pred

model = Model()  #实例化

#定义loss和优化方法
criterion = torch.nn.BCEWithLogitsLoss()  #损失函数,封装好的逻辑损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)   #进行优化梯度下降
#optimizer = torch.optim.SGD(model.parameters(), lr=0.01, weight_decay=0.001)
#Pytorch类方法正则化方法,添加一个weight_decay参数进行正则化

#befor training 
hour_var = Variable(torch.Tensor([[2.5]]))
y_pred = model(hour_var)
print("predict (before training)given", 4, 'is', float(model(hour_var).data[0][0]>0.5))

epochs = 40
for epoch in range(epochs):
	#计算grads和cost
	y_pred = model(x_data)   #x_data输入数据进入模型中
	loss = criterion(y_pred, y_data)
	print('epoch = ', epoch+1, loss.data[0])
	optimizer.zero_grad() #梯度清零
	loss.backward() #反向传播
	optimizer.step()  #优化迭代

#After training 
hour_var = Variable(torch.Tensor([[4.0]]))
y_pred = model(hour_var)
print("predict (after training)given", 4, 'is', float(model(hour_var).data[0][0]>0.5))

参考教程

PyTorch实现Logistic regression https://zhuanlan.zhihu.com/p/61992519

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值