闲谈神经网络(BP),tesnsoflow实战torch实战

BP神经网络实战

前段时间看了BP神经网络,并进行回归预测,下面从三种方法进行阐述。

方法一、直接使用波斯顿房价预测案例进行简单修改,话不多说,源码如下:(代码备注很清晰,一看既懂)

#读取数据
from sklearn.metrics import mean_squared_error #均方误差
from sklearn.metrics import mean_absolute_error #平方绝对误差
from sklearn.metrics import r2_score#R square
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd  # 能快速读取常规大小的文件。Pandas能提供高性能、易用的数据结构和数据分析工具
from sklearn.utils import shuffle  # 随机打乱工具,将原有序列打乱,返回一个全新的顺序错乱的值

# 迭代轮次
train_epochs = 1

# 学习率
learning_rate = 0.01

# 读取数据文件
def get_data():
    mydf = pd.read_csv('temp.csv', sep='\s+',encoding='utf-8')
    print(mydf)

    df = mydf.values
    print(df)
    # print(df)
    #
    # # 把df转换成np的数组格式
    # df = np.array(df)
    return df
#数据归一化操作
def normal(df):
    # 特征数据归一化
    # 对特征数据{0到11}列 做(0-1)归一化
    for i in range(10):
        df[:, i] = (df[:, i] - df[:, i].min()) / (df[:, i].max() - df[:, i].min())
    # x_data为归一化后的前10列特征数据
    x_data = df[:, :10]

    # y_data为最后1列标签数据
    y_data = df[:, 10]
    return x_data, y_data

def model():
    # 模型定义
    # 定义特征数据和标签数据的占位符
    # shape中None表示行的数量未知,在实际训练时决定一次带入多少行样本,从一个样本的随机SDG到批量SDG都可以
    #placeholder()函数是在神经网络构建graph的时候在模型中的占位,此时并没有把要输入的数据传入模型,
    # 它只会分配必要的内存。等建立session,在会话中,运行模型的时候通过feed_dict()函数向占位符喂入数据。
    x = tf.placeholder(tf.float32, [None, 10], name="X")  # 10个特征数据(10列)
    y = tf.placeholder(tf.float32, [None, 1], name="Y")  # 1个标签数据(1列)

    with tf.name_scope("Model"):
        #tf.random_normal()函数用于从“服从指定正态分布的序列”中随机取出指定个数的值。
        #w是权重
        w = tf.Variable(tf.random_normal([10, 1], stddev=0.01), name="W")

        # b 初始化值为1.0
        b = tf.Variable(1.0, name="b")
        def model(x, w, b):
            return tf.matmul(x, w) + b
        # 预测计算操作,前向计算节点
        #计算的wx+b
        pred = model(x, w, b)
    print("y_pred is %s"%(pred))

    # 定义均方差损失函数
    # 定义损失函数
    #采用均方差损失函数,square为平方,reduce_mean为求均值,y为实际数值,pred为预测即使用f(x)=wx+b计算的值

    with tf.name_scope("LossFunction"):
        #2. tf.pow(x, y, name=None)
        #释义:幂值计算操作,即 x^y
        loss_function = tf.reduce_mean(tf.pow(y - pred, 2))  # 均方误差(所有维度的均值)

    # 创建优化器
    print("loss_function is ")
    print(loss_function)
    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function)
    return loss_function, optimizer, pred, x, y, b, w


def run_model(loss_function, optimizer, pred, x_data, y_data, x, y, b, w):
    # 声明会话
    sess = tf.Session()

    # 定义初始化变量的操作
    init = tf.global_variables_initializer()

    # 为TensorBoard可视化准备数据
    # 设置日志存储目录
    logdir = './test'
    # 创建一个操作,用于记录损失值loss,后面在TensorBoard中SCALARS栏可见
    #例如:tf.summary.scalar('mean', mean)
    #用来显示标量的信息
    #一般在画loss,accuary时会用到这个函数。
    sum_loss_op = tf.summary.scalar("loss", loss_function)
    # 把所有需要记录摘要日志文件的合并,方便一次性写入
    merged = tf.summary.merge_all()
    # 启动会话
    sess.run(init)

    # 创建摘要的文件写入器
    # 创建摘要writer,将计算图写入摘要文件,后面在Tensorflow中GRAPHS栏可见
    writer = tf.summary.FileWriter(logdir, sess.graph)
    # 迭代训练
    loss_list = []  # 用于保存loss值的列表
    b0 = []
    Add_train_y = []
    Add_predict_y = []
    for epoch in range(train_epochs):
        loss_sum = 0.0
        #对应得输出值
        for xs, ys in zip(x_data, y_data):
            #reshape(-1,1)任意行,一列
            #
            #拉直了是一行十列
            xs = xs.reshape(1, 10)
            #拉直了是一行一列
            ys = ys.reshape(1, 1)
            #_ 是一个空值
            #_表示一个占位符,就是第一个获取的变量不要,用来占位的。是空值
            _, summary_str, loss = sess.run([optimizer, sum_loss_op, loss_function], feed_dict={x: xs, y: ys})
            # print("_ is %s ,sumamary is %s, loss is %s"%(_,summary_str,loss))
            writer.add_summary(summary_str, epoch)

            loss_sum = loss_sum + loss
        #随机打乱操作
        x_data, y_data = shuffle(x_data, y_data)
        #eval是执行一个字符串,并放哪会结果
        b0temp = b.eval(session=sess)  # 训练中当前变量b值
        w0temp = w.eval(session=sess)  # 训练中当前权重w值
        loss_average = loss_sum / len(y_data)  # 当前训练中的平均损失
        b0.append(b0temp)
        loss_list.append(loss_average)  # 每轮添加一次
        print("epoch=", epoch + 1, "loss=", loss_average, "b=", b0temp, "w=", w0temp)
        #调用回归函数mean_squared_error
        #sess.run(pred, feed_dict={x: x_data})为预测值
        #feed_dict的作用是给使用placeholder创建出来的tensor赋值。其实,他的作用更加广泛:feed 使用一个 值(不能是tensor,可以是tensor.eval())临时替换一个 op 的输出结果. 你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失.

        Add_train_y.append(np.sqrt(mean_squared_error(y_data, sess.run(pred, feed_dict={x: x_data}))))
        #loss_list = []#用于保存loss值的列表
        print("Add_train_y is %s"%(Add_train_y))

    return loss_list, pred, Add_train_y, sess


def plot_all(loss_list, x_data, y_data, pred, Add_train_y, sess, x, y):
    plt.plot(loss_list)

    # 模型应用
    # n = np.random.randint(6)
    n = 1
    print(n+2)
    x_test = x_data[n]
    print("x_test is %s"%(x_test))
    # print(x_test, y_data[10111])
    x_test = x_test.reshape(1, 10)
    print(x_test)
    # x_test = [[5.060753370997017e-05, 0.00010510795462839959, 1.946443604229622e-05, 0.0005985314083006087, 0.00026763599558157303, 0.9982482007561934, 1.0, 0.9969830124134441, 0.00017517992438066598, 0.0] ]
   #随机取出一个进行预测
    predict = sess.run(pred, feed_dict={x: x_test})
    print("预测值:%f" % predict)

    target = y_data[n]
    print("标签值:%f" % target)
    plt.show()
    #######        曲线拟合效果,可以看出预测效果不错       #####
    test_predictions = sess.run(pred, feed_dict={x: x_data})

    plt.scatter(y_data, test_predictions)
    plt.xlabel('True Values ')
    plt.ylabel('Predictions ')
    plt.axis('equal')
    plt.xlim(plt.xlim())
    plt.ylim(plt.ylim())
    _ = plt.plot([-100, 100], [-100, 100])
    plt.show()
    ##########                 #########                                ##

    plt.figure()
    plt.xlabel('Epoch')
    plt.ylabel('Mean Abs Error ')

    plt.plot(np.arange(10), Add_train_y,
           label = 'MAE')
    plt.legend()
    plt.ylim([0, 10])
    plt.show()


def main():
    df = get_data()  # getdata
    print(df)
    x_data, y_data = normal(df)
    print("X_data is %s,y_data is %s"%(x_data,y_data))
    #loss_function是军方误差
    loss_function, optimizer, pred, x, y, b, w = model()
    loss_list, pred, Add_train_y, sess = run_model(loss_function, optimizer, pred, x_data, y_data, x, y, b, w)
    plot_all(loss_list, x_data, y_data, pred, Add_train_y, sess, x, y)


if __name__ == '__main__':
    main()

实验结果如下:

在这里插入图片描述

方法二、tensorflow结合正则。

import tensorflow as tf
import pandas as pd
import numpy as np
createVar = locals()

'''
建立一个网络结构可变的BP神经网络通用代码:

在训练时各个参数的意义:
hidden_floors_num:隐藏层的个数
every_hidden_floor_num:每层隐藏层的神经元个数
learning_rate:学习速率
activation:激活函数
regularization:正则化方式
regularization_rate:正则化比率
total_step:总的训练次数
train_data_path:训练数据路径
model_save_path:模型保存路径

利用训练好的模型对验证集进行验证时各个参数的意义:
model_save_path:模型保存路径
validate_data_path:验证集路径
precision:精度

利用训练好的模型进行预测时各个参数的意义:
model_save_path:模型的保存路径
predict_data_path:预测数据路径
predict_result_save_path:预测结果保存路径
'''


# 训练模型全局参数
hidden_floors_num = 1
every_hidden_floor_num = [50]
learning_rate = 0.00001
activation = 'tanh'
regularization = 'L2'
regularization_rate = 0.7
total_step = 100000
train_data_path = './sum.csv'
model_save_path = './model/predict_model'

# 利用模型对验证集进行验证返回正确率
# model_save_path = 'C:/Users/zhangxing/Desktop/BP_regression/model/predict_model'
# validate_data_path = 'C:/Users/zhangxing/Desktop/BP_regression/validate.csv'
precision = 0.5

# 利用模型进行预测全局参数
model_save_path = './model/predict_model'
predict_data_path = './data2.csv'
predict_result_save_path = './result.csv'


def inputs(train_data_path):
    train_data = pd.read_csv(train_data_path)
    # train_data= train_data.replace(to_replace=r'^\s*$',value=np.nan,regex=True,inplace=True)
    # train_data=pd.DataFrame(train_data)
    # train_data=train_data.strip()
    print(train_data)
    #X是前面的每行的三个数,y是最后一个的预测值
    X = np.array(train_data.iloc[:, :-1])
    Y = np.array(train_data.iloc[:, -1:])
    return X, Y


def make_hidden_layer(pre_lay_num, cur_lay_num, floor):
    createVar['w' + str(floor)] = tf.Variable(tf.random_normal([pre_lay_num, cur_lay_num], stddev=1))
    createVar['b' + str(floor)] = tf.Variable(tf.random_normal([cur_lay_num], stddev=1))
    return eval('w'+str(floor)), eval('b'+str(floor))


def initial_w_and_b(all_floors_num):
    # 初始化隐藏层的w, b
    for floor in range(2, hidden_floors_num+3):
        pre_lay_num = all_floors_num[floor-2]
        cur_lay_num = all_floors_num[floor-1]
        w_floor, b_floor = make_hidden_layer(pre_lay_num, cur_lay_num, floor)
        createVar['w' + str(floor)] = w_floor
        createVar['b' + str(floor)] = b_floor


def cal_floor_output(x, floor):
    w_floor = eval('w'+str(floor))
    b_floor = eval('b'+str(floor))
    if activation == 'sigmoid':
        output = tf.sigmoid(tf.matmul(x, w_floor) + b_floor)
    if activation == 'tanh':
        output = tf.tanh(tf.matmul(x, w_floor) + b_floor)
    if activation == 'relu':
        output = tf.nn.relu(tf.matmul(x, w_floor) + b_floor)
    return output


def inference(x):
    output = x
    for floor in range(2, hidden_floors_num+2):
        output = cal_floor_output(output, floor)

    floor = hidden_floors_num+2
    w_floor = eval('w'+str(floor))
    b_floor = eval('b'+str(floor))
    output = tf.matmul(output, w_floor) + b_floor
    return output
#计算total-loss值
#默认l1正则化
def loss(x, y_real):
    y_pre = inference(x)
    if regularization == 'None':
        total_loss = tf.reduce_sum(tf.squared_difference(y_real, y_pre))

    if regularization == 'L1':
        total_loss = 0
        for floor in range(2, hidden_floors_num + 3):
            w_floor = eval('w' + str(floor))
            total_loss = total_loss + tf.contrib.layers.l1_regularizer(regularization_rate)(w_floor)
        # total_loss = total_loss + tf.reduce_sum(tf.squared_difference(y_real, y_pre))
        total_loss = total_loss + tf.reduce_sum(tf.squared_difference(tf.clip_by_value(y_real,1e-8,tf.reduce_max(y_real)), tf.clip_by_value(y_pre,1e-8,tf.reduce_max(y_pre))))

    if regularization == 'L2':
        total_loss = 0
        for floor in range(2, hidden_floors_num + 3):
            w_floor = eval('w' + str(floor))
            total_loss = total_loss + tf.contrib.layers.l2_regularizer(regularization_rate)(w_floor)
        total_loss = total_loss + tf.reduce_sum(tf.squared_difference(tf.clip_by_value(y_real,1e-8,tf.reduce_max(y_real)), tf.clip_by_value(y_pre,1e-8,tf.reduce_max(y_pre))))

    return total_loss


def train(total_loss):
    train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss)
    return train_op


# 训练模型
def train_model(hidden_floors_num, every_hidden_floor_num, learning_rate, activation, regularization,
                regularization_rate, total_step, train_data_path, model_save_path):
    X, Y = inputs(train_data_path)
    print("X is %s,Y is %s"%(X,Y))
    #X_dim是指有几个特征,这里是三个,x1,x2,x3
    print("X is %s"%(X))
    X_dim = X.shape[1]
    print("X_dim is %s"%(X_dim))
    all_floors_num = [X_dim] + every_hidden_floor_num + [1]

    # 将参数保存到和model_save_path相同的文件夹下, 恢复模型进行预测时加载这些参数创建神经网络
    temp = model_save_path.split('/')
    model_name = temp[-1]
    parameter_path = ''
    for i in range(len(temp)-1):
        parameter_path = parameter_path + temp[i] + '/'
    parameter_path = parameter_path + model_name + '_parameter.txt'
    with open(parameter_path, 'w') as f:
        f.write("all_floors_num:")
        for i in all_floors_num:
            f.write(str(i) + ' ')
        f.write('\n')
        f.write('activation:')
        f.write(str(activation))
    #占位
    x = tf.placeholder(dtype=tf.float32, shape=[None, X_dim])
    y_real = tf.placeholder(dtype=tf.float32, shape=[None, 1])
    initial_w_and_b(all_floors_num)
    y_pre = inference(x)
    print("x is %s,y_pre is %s,y_real is %s"%(x,y_pre,y_real))

    total_loss = loss(x, y_real)
    print("total-losss is %s"%(total_loss))
    #得到随机梯度值
    train_op = train(total_loss)
    print("train_op is %s"%(train_op))

    # 记录在训练集上的正确率
    train_accuracy = tf.reduce_mean(tf.cast(tf.abs(y_pre - y_real) < precision, tf.float32))

    # 保存模型
    saver = tf.train.Saver()

    # 在一个会话对象中启动数据流图,搭建流程
    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    for step in range(total_step):
        sess.run([train_op], feed_dict={x: X[0:, :], y_real: Y[0:, :]})
        if step % 1000 == 0:
            saver.save(sess, model_save_path)
            total_loss_value = sess.run(total_loss, feed_dict={x: X[0:, :], y_real: Y[0:, :]})
            print('train step is ', step, ', total loss value is ', total_loss_value,
                  ', train_accuracy', sess.run(train_accuracy, feed_dict={x: X, y_real: Y}),
                  ', precision is ', precision)

    saver.save(sess, model_save_path)
    print("训练已经完成")
    sess.close()


# def validate(model_save_path, validate_data_path, precision):
#     # **********************根据model_save_path推出模型参数路径, 解析出all_floors_num和activation****************
#     temp = model_save_path.split('/')
#     model_name = temp[-1]
#     parameter_path = ''
#     for i in range(len(temp)-1):
#         parameter_path = parameter_path + temp[i] + '/'
#     parameter_path = parameter_path + model_name + '_parameter.txt'
#     with open(parameter_path, 'r') as f:
#         lines = f.readlines()
#
#     # 从读取的内容中解析all_floors_num
#     temp = lines[0].split(':')[-1].split(' ')
#     all_floors_num = []
#     for i in range(len(temp)-1):
#         all_floors_num = all_floors_num + [int(temp[i])]
#
#     # 从读取的内容中解析activation
#     activation = lines[1].split(':')[-1]
#     hidden_floors_num = len(all_floors_num) - 2
#
#     # **********************读取验证数据*************************************
#     X, Y = inputs(validate_data_path)
#     X_dim = X.shape[1]
#
#     # **********************创建神经网络************************************
#     x = tf.placeholder(dtype=tf.float32, shape=[None, X_dim])
#     y_real = tf.placeholder(dtype=tf.float32, shape=[None, 1])
#     initial_w_and_b(all_floors_num)
#     y_pre = inference(x)
#
#     # 记录在验证集上的正确率
#     validate_accuracy = tf.reduce_mean(tf.cast(tf.abs(y_pre - y_real) < precision, tf.float32))
#
#     sess = tf.Session()
#     saver = tf.train.Saver()
#     with tf.Session() as sess:
#         # 读取模型
#         try:
#             saver.restore(sess, model_save_path)
#             print('模型载入成功!')
#         except:
#             print('模型不存在,请先训练模型!')
#             return
#         validate_accuracy_value = sess.run(validate_accuracy, feed_dict={x: X, y_real: Y})
#         print('validate_accuracy is ', validate_accuracy_value)
#
#     return validate_accuracy_value


def predict(model_save_path, predict_data_path, predict_result_save_path):
    # **********************根据model_save_path推出模型参数路径, 解析出all_floors_num和activation****************
    temp = model_save_path.split('/')
    model_name = temp[-1]
    parameter_path = ''
    for i in range(len(temp)-1):
        parameter_path = parameter_path + temp[i] + '/'
    parameter_path = parameter_path + model_name + '_parameter.txt'
    with open(parameter_path, 'r') as f:
        lines = f.readlines()

    # 从读取的内容中解析all_floors_num
    temp = lines[0].split(':')[-1].split(' ')
    all_floors_num = []
    for i in range(len(temp)-1):
        all_floors_num = all_floors_num + [int(temp[i])]

    # 从读取的内容中解析activation
    activation = lines[1].split(':')[-1]
    hidden_floors_num = len(all_floors_num) - 2

    # **********************读取预测数据*************************************
    predict_data = pd.read_csv(predict_data_path)
    X = np.array(predict_data.iloc[:, :])
    X_dim = X.shape[1]

    # **********************创建神经网络************************************
    x = tf.placeholder(dtype=tf.float32, shape=[None, X_dim])
    initial_w_and_b(all_floors_num)
    y_pre = inference(x)

    sess = tf.Session()
    saver = tf.train.Saver()
    with tf.Session() as sess:
        # 读取模型
        try:
            saver.restore(sess, model_save_path)
            print('模型载入成功!')
        except:
            print('模型不存在,请先训练模型!')
            return
        y_pre_value = sess.run(y_pre, feed_dict={x: X[0:, :]})

        # 将预测结果写入csv文件
        predict_data_columns = list(predict_data.columns) + ['predict']
        data = np.column_stack([X, y_pre_value])
        result = pd.DataFrame(data, columns=predict_data_columns)
        result.to_csv(predict_result_save_path, index=False)
        print('预测结果保存在:', predict_result_save_path)


if __name__ == '__main__':
    mode = 'train'

    if mode == 'train':
        # 训练模型
        train_model(hidden_floors_num, every_hidden_floor_num, learning_rate, activation, regularization,
                    regularization_rate, total_step, train_data_path, model_save_path)

    # if mode == 'validate':
    #     # 利用模型对验证集进行正确性测试
    #     validate(model_save_path, validate_data_path, precision)

    if mode == 'predict':
        # 利用模型进行预测
        predict(model_save_path, predict_data_path, predict_result_save_path)

实验结果

在这里插入图片描述

torch实战

dataset.py

from torch.utils.data import Dataset,DataLoader
import pandas as pd
import numpy as np
import torch



class MyDataset(Dataset):
    def __init__(self,data_dir):
        df = pd.read_csv(data_dir,delim_whitespace=True)
        datas = df.to_numpy()

        for i in range(10):
            col = datas[:,i]
            col_max = np.max(col)
            col_min = np.min(col)
            datas[:, i] = (col-col_min)/(col_max-col_min)

        self.xs = torch.from_numpy( np.array(datas[:,:10],dtype=np.float32))
        self.ys = torch.from_numpy( np.array(datas[:,10:],dtype=np.float32))

    def __len__(self):
        return len(self.ys)

    def __getitem__(self, item):
        return self.xs[item],self.ys[item]



mydataset = MyDataset('temp.csv')
train_Dataloder = DataLoader(dataset=mydataset,batch_size=2000)


if __name__ == '__main__':
    for x,y in mydataset:
        print(y)

train.py

from torch import nn
import torch
from torch.nn import functional as F
from faceRecognize.dataset import *
from torch import optim
from regress.dataset import train_Dataloder

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.feature = nn.Sequential(
            nn.Linear(in_features=10,out_features=32),
            nn.BatchNorm1d(32),
            nn.LeakyReLU(),
            nn.Linear(in_features=32, out_features=64),
            nn.BatchNorm1d(64),
            nn.LeakyReLU(),
            nn.Linear(in_features=64, out_features=128),
            nn.BatchNorm1d(128),
            nn.LeakyReLU()
        )
        self.output = nn.Linear(128,1)

    def forward(self, x):
        feature = self.feature(x)
        output = self.output(feature)
        return output

if __name__ == '__main__':

    net = Net().cuda()
    loss_func = nn.MSELoss()
    opt = optim.Adam(net.parameters(),lr=0.0001)
    for i in range(1000):
        for index,(xs,ys) in enumerate(train_Dataloder):
            xs = xs.cuda()
            ys = ys.cuda()
            output = net(xs)
            loss = loss_func(output,ys)
            opt.zero_grad()
            loss.backward()
            opt.step()
            print(loss)


需要数据集可以邮箱我:

  • sessioncookies@163.com

Github

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
bp神经网络回归是一种用于解决回归问题的人工神经网络模型。而torch库是一个开源的深度学习框架,可以用于构建和训练神经网络模型。通过torch库中的相关函数和类,我们可以很方便地实现bp神经网络回归模型。 首先,我们需要导入torch库并定义网络模型。可以使用torch.nn模块来构建网络模型的结构,可以选择不同的层类型和激活函数来构造自己的网络结构。 接下来,我们需要定义网络的损失函数和优化器。可以使用torch.optim模块来定义不同的优化算法,如随机梯度下降(SGD)或AdaGrad。这些优化器将帮助我们在训练过程中调整网络参数,使其能够更好地拟合训练数据。 然后,我们需要进行训练和测试。首先,我们需要准备训练数据和测试数据,并将其转换为torch库中的张量(Tensor)格式。接下来,我们可以使用torch库中的函数来进行网络模型的训练。训练过程中,我们可以通过计算损失函数来评估网络模型在训练数据上的拟合情况,并使用优化器来调整网络参数。训练完成后,我们可以使用训练好的模型对测试数据进行预测,评估模型在测试数据上的性能。 最后,我们可以根据需求对网络模型进行调整和优化。可以尝试修改网络模型的结构、调整损失函数和优化器的超参数等,以获得更好的回归性能。 总的来说,通过torch库的功能,我们可以相对简便地实现bp神经网络回归模型,并进行训练和测试。这样,我们可以根据数据集中的特征和目标值,训练出一个能够预测目标值的神经网络模型

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值