为了在 C++ 中实现基于 OpenCV 的自动曝光(AE)、自动白平衡(AWB)和自动对焦(AF)算法,可以参考以下示例代码。请确保你已经安装并配置好了 OpenCV 以便能够成功编译和运行以下代码。
### 自动曝光(AE, Auto Exposure)
```cpp
#include <opencv2/opencv.hpp>
cv::Mat autoExposure(const cv::Mat &frame) {
cv::Mat gray, correctedFrame;
cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
double avgBrightness = cv::mean(gray)[0];
double alpha = 1.5 - avgBrightness / 255.0; // Scale factor to adjust brightness
frame.convertTo(correctedFrame, -1, alpha, 0);
return correctedFrame;
}
int main() {
cv::VideoCapture cap(0);
if (!cap.isOpened()) {
return -1;
}
cv::namedWindow("Auto Exposure", cv::WINDOW_AUTOSIZE);
while (true) {
cv::Mat frame;
cap >> frame;
if (frame.empty()) break;
frame = autoExposure(frame);
cv::imshow("Auto Exposure", frame);
if (cv::waitKey(30) >= 0) break;
}
cap.release();
cv::destroyAllWindows();
return 0;
}
```
### 自动白平衡(AWB, Auto White Balance)
```cpp
#include <opencv2/opencv.hpp>
#include <opencv2/xphoto/white_balance.hpp>
cv::Mat autoWhiteBalance(const cv::Mat &frame) {
cv::Mat balancedFrame;
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->balanceWhite(frame, balancedFrame);
return balancedFrame;
}
int main() {
cv::VideoCapture cap(0);
if (!cap.isOpened()) {
return -1;
}
cv::namedWindow("Auto White Balance", cv::WINDOW_AUTOSIZE);
while (true) {
cv::Mat frame;
cap >> frame;
if (frame.empty()) break;
frame = autoWhiteBalance(frame);
cv::imshow("Auto White Balance", frame);
if (cv::waitKey(30) >= 0) break;
}
cap.release();
cv::destroyAllWindows();
return 0;
}
```
### 自动对焦(AF, Auto Focus)
```cpp
#include <opencv2/opencv.hpp>
cv::Mat autoFocus(const cv::Mat &frame) {
cv::Mat gray;
cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
cv::Mat laplacian;
cv::Laplacian(gray, laplacian, CV_64F);
double variance = cv::mean(laplacian.mul(laplacian))[0];
std::cout << "Sharpness: " << variance << std::endl;
// 尽管在实际场景中,AF 通常由相机硬件完成,这里只是简单展示如何计算图像锐度
return frame;
}
int main() {
cv::VideoCapture cap(0);
if (!cap.isOpened()) {
return -1;
}
cv::namedWindow("Auto Focus", cv::WINDOW_AUTOSIZE);
while (true) {
cv::Mat frame;
cap >> frame;
if (frame.empty()) break;
frame = autoFocus(frame);
cv::imshow("Auto Focus", frame);
if (cv::waitKey(30) >= 0) break;
}
cap.release();
cv::destroyAllWindows();
return 0;
}
```
### 结合 AE、AWB 和 AF
将以上三个功能结合起来,可以处理摄像头输入,并同时进行自动曝光、自动白平衡和自动对焦调整。
```cpp
#include <opencv2/opencv.hpp>
#include <opencv2/xphoto/white_balance.hpp>
cv::Mat autoExposure(const cv::Mat &frame) {
cv::Mat gray, correctedFrame;
cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
double avgBrightness = cv::mean(gray)[0];
double alpha = 1.5 - avgBrightness / 255.0; // Scale factor to adjust brightness
frame.convertTo(correctedFrame, -1, alpha, 0);
return correctedFrame;
}
cv::Mat autoWhiteBalance(const cv::Mat &frame) {
cv::Mat balancedFrame;
cv::Ptr<cv::xphoto::SimpleWB> wb = cv::xphoto::createSimpleWB();
wb->balanceWhite(frame, balancedFrame);
return balancedFrame;
}
cv::Mat autoFocus(const cv::Mat &frame) {
cv::Mat gray;
cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
cv::Mat laplacian;
cv::Laplacian(gray, laplacian, CV_64F);
double variance = cv::mean(laplacian.mul(laplacian))[0];
std::cout << "Sharpness: " << variance << std::endl;
return frame;
}
int main() {
cv::VideoCapture cap(0);
if (!cap.isOpened()) {
return -1;
}
cv::namedWindow("Auto Exposure, White Balance, and Focus", cv::WINDOW_AUTOSIZE);
while (true) {
cv::Mat frame;
cap >> frame;
if (frame.empty()) break;
frame = autoExposure(frame);
frame = autoWhiteBalance(frame);
frame = autoFocus(frame);
cv::imshow("Auto Exposure, White Balance, and Focus", frame);
if (cv::waitKey(30) >= 0) break;
}
cap.release();
cv::destroyAllWindows();
return 0;
}
```
这段代码展示了如何利用 OpenCV 以及其扩展库来实现基本的自动曝光、自动白平衡和自动对焦功能。如前所述,实际应用中的 3A 算法通常更复杂且考虑更多的硬件参数,这里主要是演示软件层面的基本实现。希望这些例子可以为你基于 C++ 和 OpenCV 进行视频处理提供一个良好的起点。