- 博客(187)
- 资源 (1)
- 收藏
- 关注
原创 微信自动化进阶:用 `uiautomation` 和 `uiautomation2` 打造你的智能小助手 (自动收发消息)
(Android端) 库来实现微信消息的自动发送。这次,我们将更进一步,让我们的Python脚本不仅能发送消息,还能。PC端微信的挑战在于其UI元素属性可能不那么稳定,且未读消息的标记方式、消息内容的提取需要仔细观察。在上一篇文章中,我们探讨了如何使用 Python 的。查看元素属性会方便很多,但同样面临UI变化的问题。,就像一个简单的客服机器人或个人助理。Android端借助。
2025-05-07 13:30:02
695
1
原创 Python 自动化微信消息发送:`uiautomation` 与 `uiautomation2` 实战指南
通过和这两个库,我们可以有效地实现PC端和Android端微信消息的自动发送。虽然UI元素定位是这类自动化脚本中最具挑战性的部分,但掌握了元素查看工具和基本的定位方法后,你就能应对大部分场景。记住,自动化脚本的维护是一个持续的过程。随着微信版本的迭代,你可能需要定期调整你的脚本。希望本文能为你打开微信自动化的大门,探索更多有趣和实用的应用场景!希望这篇博客文章对你有所帮助!如果你有任何问题或建议,欢迎在评论区留言。
2025-05-07 13:29:06
810
原创 uiautomation` 库的高级教程
Microsoft UI Automation (UIA) 是 Windows 平台上的一种辅助功能框架,它允许应用程序(包括自动化脚本)以编程方式访问、识别和操作另一个应用程序的用户界面 (UI) 元素。模式是 UIA 的核心概念,它将控件的功能标准化。例如,无论一个按钮长什么样,只要它支持,你就可以调用Invoke()方法来“点击”它。是一个强大的 Python 库,适用于 Windows 桌面应用的 GUI 自动化。
2025-05-06 15:46:45
1221
原创 量化CTA策略开发的进阶之路:高级统计学方法的深度剖析与Python实践
从基础的探索性分析到复杂的多元动态模型,从传统的风险指标到基于极值和依赖结构的精细度量,再到对抗过拟合的严谨验证体系,高级统计学方法提供了不可或缺的理论框架和实践工具。本文在前文基础上,进一步拓展统计学在CTA策略开发中的应用深度,探讨包括多元时间序列模型、极值理论、依赖结构建模、高级回测验证等在内的进阶主题,并辅以Python代码示例,旨在揭示统计学如何为构建卓越CTA策略提供更坚实的理论支撑和更精密的实战武器。深度EDA需要超越描述性统计。回测是必要的,但极易产生具有误导性的“完美”结果(过拟合)。
2025-04-23 00:12:32
936
原创 构建稳健的量化投资体系:融合多元理念与Python实践的深度解析
本文旨在构建一个系统化的量化投资框架,深度融合价值投资、趋势跟踪、动量效应、风险套利等多元投资哲学。我们将超越基础概念,探讨这些理念如何通过严谨的数学模型和统计方法进行量化表达,并重点阐述如何利用Python及其强大的生态系统,实现从数据处理、因子挖掘、策略构建、组合优化、风险管理到实盘执行的全流程开发。本文整合了期货/现货市场本质、安全边际识别、市场“势”能判断、系统化交易信号、多维风险控制及资产配置等关键要素,致力于为量化研究者和实践者提供一个兼具理论深度与实践指导的综合性视图。
2025-04-23 00:12:21
1061
原创 行稳致远:中国市场低风险量化投资策略深度解析
在追求绝对收益和控制风险的双重目标下,低风险量化投资策略应运而生,旨在通过精密的模型和严格的风控,在复杂多变的市场环境中寻求稳健的回报。本文将深入探讨适用于中国市场的几种主流低风险量化投资模式,分析其核心逻辑、应用场景、深度研究方向,并提供简化的Python代码示例,以期为投资者提供有价值的参考。然而,“低风险”不等于“无风险”,投资者需要深刻理解策略的收益来源和潜在风险点,结合中国市场的具体特点,持续进行深度研究和模型迭代,并建立完善的风险管理体系。投资有风险,入市需谨慎。
2025-04-22 01:33:58
633
原创 字节跳动亮剑通用 Agent:扣子空间内测启动,能否重塑智能任务处理?
这一过程旨在模拟人类解决复杂问题的工作流,最终输出用户需要的完整结果,其形式可以是结构化的网页、演示文稿(PPT)乃至飞书文档等,直接服务于实际工作场景。字节跳动携扣子空间入场,无疑为通用 Agent 领域注入了新的活力。无论如何,扣子空间的出现,预示着 AI Agent 正从概念走向更实用的阶段,它有潜力成为下一代重要的生产力工具,甚至可能改变我们与数字世界互动的方式。同时,平台支持多任务并行处理,允许用户同时运行多个 Agent 任务,这对于需要处理多个项目或信息流的用户来说,无疑提升了工作效率。
2025-04-22 01:33:44
891
原创 引爆投研革命:Python、机器学习与深度学习如何深度赋能现代量化投资
拥抱数据科学,掌握智能工具,将人类的金融智慧与机器的计算能力相结合,是每一位立志在未来金融市场中乘风破浪的投资者和研究者的必由之路。这类梯度提升树算法,因其在处理表格数据(量化投资中最常见的数据类型)时的高效性、准确性和对缺失值的良好处理能力,已成为众多Quant团队的主力模型。学习Python,实践机器学习,探索深度学习,将数据转化为洞察力,将洞察力转化为持续的阿尔法。Python以其“胶水语言”的特性,将数据获取、处理、分析、建模、回测、部署等量化投资的各个环节流畅地粘合在一起,极大地提高了研发效率。
2025-04-22 01:33:29
673
原创 进阶量化交易系统:融合 KVO、MACD、动态风控与前向优化实战 SYF
本文提供了一个结合 KVO、MACD、ATR 动态止损和前向优化的进阶量化交易系统框架及完整 Python 实现。通过 WFO,策略获得了适应市场变化的能力;通过 ATR 止损,风险得到更主动的管理。这不仅是一个代码示例,更是一种构建稳健、适应性量化策略的方法论。请记住,没有完美的策略,只有持续迭代和优化的过程。将此框架作为起点,不断测试、验证、改进,并结合自身的风险偏好和市场理解,才能在量化交易的征途上行稳致远。
2025-04-22 01:33:09
390
原创 驭心智:洞察交易决策中的认知陷阱
想象一下,在评估一项资产的价值时,你最先接触到的数字——无论是分析师的初期预测、历史高点,还是随口听到的一个估值——都可能像一只无形的锚,将你的后续判断牢牢固定在其附近。更微妙的是,市场普遍的预期、媒体报道中的特定数字,甚至是不经意间看到的价格图表上的某个点位,都可能成为束缚我们客观评估的“锚”。一个著名的例子是关于肾癌发病率的研究,数据显示发病率最低和最高的县大多是人口稀少的乡村地区。然而,这些心智捷径在带来效率的同时,也埋藏着系统性的认知陷阱,深刻影响着我们的判断,尤其是在风险与收益交织的金融世界。
2025-04-22 01:32:57
718
原创 拥抱变革,驾驭未来:AI 浪潮下,为什么 Python 依然是你最值得掌握的利器?
以 ChatGPT 为代表的大型语言模型 (LLM) 正以前所未有的速度渗透到各行各业,尤其对软件开发领域带来了深刻的变革。AI 大模型带来的不是末日,而是范式的转移。低水平的重复性编码工作确实面临冲击,但高阶的、创造性的、需要深度理解和整合能力的工作,其价值反而更加凸显。不要害怕 AI 抢走你的工作,而要思考如何让 AI 成为你手中最强大的工具。,你将不仅能在 AI 浪潮中站稳脚跟,更能乘风破浪,开创属于自己的职业新高度。AI 大模型并非程序员的终结者,而是强大的。
2025-04-22 01:32:46
786
原创 机器学习的数学基石:深度研究与总结
机器学习(Machine Learning, ML)作为人工智能(AI)的核心分支,近年来取得了瞩目的成就,并在各个领域展现出巨大的潜力。本文旨在深度探讨和总结机器学习研究所需的核心数学领域,阐述它们在机器学习中的具体作用,并为学习者提供一个结构化的知识图谱。学习数学可能是一个挑战,但它为探索智能的奥秘打开了一扇至关重要的大门,其回报是长远而丰厚的。这在应用层面确实可行,但要真正理解算法的内在逻辑、优劣势、适用场景,以及进行模型调优、解决复杂问题、甚至研发新算法,扎实的数学功底是不可或缺的。
2025-04-22 01:32:36
897
原创 深入解析《优势投资法则》:理念、策略与实践
本文将深入探讨“优势投资法则”的内涵,解构其核心理念,梳理其策略框架与“算法”,探讨实践应用流程,并提供 Python 代码示例以辅助理解和分析。这更像是一本浓缩的“优势投资”教程,旨在帮助投资者建立一种基于自身或标的优势的、更为严谨和理性的投资思维体系。寻找、建立和维持投资优势是一个持续的、充满挑战的过程,需要非凡的耐心、纪律和智慧。虽然道路艰难,但对于那些愿意付出努力、持续学习、严守纪律的投资者而言,优势投资法则提供了一条在长期投资旅程中获得成功的、逻辑自洽的路径。理解这些来源是实践优势投资的第一步。
2025-04-22 01:32:26
360
原创 《笑傲股市》深度解析:掌握 CAN SLIM 法则,发掘超级成长股的秘诀
它并非空谈理论,而是基于对历史上数百只表现最卓越股票(Superperformance Stocks)的严谨实证研究,提炼出了一套系统化、可操作性强的选股与交易策略——CAN SLIM 法则并非保证盈利的魔法公式,但它为投资者提供了一个清晰的框架,去寻找那些具备巨大增长潜力的公司,并在正确的时机介入。这种基于历史数据和成功模式的归纳法,构成了 CAN SLIM 法则的坚实基础。对于渴望在股市中获得长期成功的投资者而言,《笑傲股市》无疑是一本值得反复阅读和实践的宝典。“M”代表的市场方向是整个系统的基石。
2025-04-22 01:32:14
742
原创 数学建模竞赛炼“模”术:历年真题视角下的核心模型深度解析
历年真题展示了数学建模的广阔天地和核心模型的强大威力。竞赛的成功不仅在于选择了“正确”的模型,更在于对问题的深刻理解、合理的抽象简化、严谨的逻辑推导、有效的求解计算、以及清晰的表达阐述。模型是建模者的“武器”,而灵活运用、融会贯通、勇于创新的建模思想,才是真正的“内功心法”。无论是本科生赛题还是研究生赛题,其核心都在于从复杂现实或数据中提炼数学结构,构建恰当模型,并进行求解、分析与验证。随着数据量的增大和计算能力的提升,机器学习模型在建模竞赛中崭露头角,尤其是在研究生赛题和部分数据驱动的本科生赛题中。
2025-04-22 01:32:04
963
原创 《原则》深度解读:构建认知现实、优化决策的系统化指南
原则》远不止是一本商业管理或个人成长的书籍,它是一次关于如何更理性、更系统、更有效地认知世界和做出决策的思维方式的深刻启示。深入理解并实践《原则》,可能不会让你立刻复制达利欧的成功,但它无疑将为你提供一套强大的思想武器,帮助你在复杂多变的世界中,更清晰地思考,更明智地行动,从而更有可能实现自己的人生和工作目标。它最终指向的是一种更清醒、更主动、更具建设性的生存状态。这本书的核心目标是分享一套基于现实、逻辑严谨且可复制的原则,帮助读者更有效地认识世界、做出决策,并在生活和工作中取得成功。
2025-04-22 01:31:49
887
原创 量化投资的奠基者与塑造者:解码金融市场的科学巨匠
他的实践,首次系统性地证明了科学方法能够战胜市场波动,为整个量化投资领域提供了最初的、无可辩驳的“概念验证”,是当之无愧的“量化投资教父”。他们不仅是各自领域的佼佼者,更是跨界的思想家和实践者,凭借非凡的智慧和前瞻性的视野,奠定了量化投资的基石,并持续塑造着它的未来。爱德华·索普的开创性验证、詹姆斯·西蒙斯的神秘巅峰、大卫·肖的技术整合、克里夫·阿斯内斯的学术转化,以及肯·格里芬的技术赋能——这些量化投资领域的传奇人物,以各自独特的方式,共同谱写了金融市场由经验主义向科学主义演进的宏伟篇章。
2025-04-22 01:31:40
750
原创 MATLAB深度解析:从矩阵实验室到科学计算的基石——辉煌、演进与不老的回响
MATLAB无疑是科学计算史上的一座丰碑。它以其创新的矩阵核心理念、友好的交互方式和强大的工具箱生态,定义了一个时代,并在教育和工业界留下了不可磨灭的印记。称其为“经典”,是因为它奠定了基础,塑造了思维,创造了辉煌。然而,MATLAB并非仅仅是“曾经的经典”。面对开源浪潮和新兴技术的挑战,它仍在积极演进,巩固优势领域,拓展新兴方向。
2025-04-22 01:31:30
974
原创 掘金北交所:高阶策略与深度洞察
北京证券交易所(北交所)作为中国多层次资本市场的重要组成部分,以其独特的交易机制(如30%涨跌幅限制)、服务创新型中小企业的定位以及相对较低的流动性,构建了一个既充满活力又极具挑战的投资生态。对于敏锐的投资者而言,北交所并非简单的投机场所,而是一片需要深度挖掘、审慎布局的沃土。北交所蕴藏着巨大的机遇,但这需要投资者具备超越市场平均水平的认知、更为严谨的研究方法和更强的风险控制能力。通过系统化的策略、深入的研究、严格的纪律和持续的学习,我们有望在这片充满活力的市场中,成为真正的价值猎手,实现长期稳健的回报。
2025-04-22 01:31:21
601
原创 深入解析永续合约资金费率:机制、影响与Python实战
永续合约是一种特殊的期货合约,其最显著的特点是没有到期日。这意味着交易者可以无限期地持有仓位,而不必像传统期货那样担心到期交割的问题。然而,没有到期日也带来了一个挑战:如何确保永续合约的市场价格(标记价格)不会与其标的资产(如比特币)的现货指数价格产生过大的偏离?这就是资金费率机制发挥作用的地方。它通过定期(通常每8小时)在多头(Long)和空头(Short)持仓者之间进行资金交换,来激励交易者采取行动,从而使永续合约价格回归现货价格。
2025-04-22 01:31:09
343
原创 量化CTA策略开发的基石:统计学方法的深度应用与Python实践
从最初的数据探索,到信号的识别与建模,再到严格的风险控制和绩效验证,每一步都离不开统计学原理和方法的支撑。商品交易顾问(CTA)策略,特别是量化CTA,严重依赖于对市场数据的系统性分析来识别交易机会、管理风险和评估绩效。没有严谨的统计学方法论,量化CTA策略很容易陷入数据挖掘的陷阱(Data Snooping Bias),导致过拟合(Overfitting),最终在实盘中表现不佳。本文将深入探讨在CTA策略开发中常用的关键统计学方法,并提供相应的Python代码示例,旨在帮助读者理解其原理和实践应用。
2025-04-21 02:52:12
817
原创 傅里叶变换(特别是快速傅里叶变换 FFT)在量化投资策略开发中可能的应用场景
傅里叶变换及其变种(如 STFT、小波变换)为量化投资者提供了一套强大的工具,用于从频域视角分析金融时间序列。它可以帮助发现隐藏的周期性、过滤噪声、提取有用的特征。然而,成功应用的关键在于理解其假设和局限性,谨慎选择参数,进行严格的测试,并将其整合到更广泛的量化框架中。纯粹基于历史周期拟合的策略风险很高,将频域分析作为特征工程或信号增强的一部分,通常是更稳健的做法。好的,我们来探讨傅里叶变换(特别是快速傅里叶变换 FFT)在量化投资策略开发中可能的应用场景,并提供相应的 Python 代码示例。
2025-04-21 02:43:43
363
原创 洞察市场深层节奏:利用Python和傅里叶变换优化量化交易策略
然而,价格数据中充斥着大量的短期随机波动,即“市场噪音”,这不仅干扰了交易者的判断,也使得传统的技术指标(如移动平均线)常常产生滞后或虚假的交易信号。通过Python的便捷实现,我们可以有效地利用FFT技术对价格数据进行滤波降噪,提取核心趋势,并以此为基础构建出多样化、可能更具稳健性的交易策略。然而,FFT并非万能的“圣杯”,深刻理解其数学原理、认识其局限性、进行严格的回测验证和参数优化,并将其与其他分析工具巧妙结合,才是发挥其真正威力的关键所在。越小,滤波越强,得到的曲线越平滑,但可能滞后性增加;
2025-04-21 02:38:43
407
原创 从平台函数到 Python:量化策略开发的核心 Python 函数与实践
然而,随着策略复杂度的提升和对更高灵活性、更强生态系统支持的需求,许多开发者转向了 Python 这个功能强大且拥有庞大社区支持的编程语言。虽然 Python 的语法和函数调用方式与 TB/文华有显著不同,但其强大的库支持、灵活性和广泛的应用场景使其成为现代量化策略开发的主流选择。本文旨在结合您提供的 TB/文华函数列表,梳理出在 Python 量化策略开发中最常用、最有价值的函数类别及其对应的 Python 实现思路和常用库,帮助您顺利地将策略思路从平台脚本迁移到 Python 环境。
2025-04-21 02:33:28
286
原创 马丁格尔策略 核心思想提炼与CTA策略转化
核心思想提炼与CTA策略转化构建可实盘的CTA策略框架一个实盘CTA策略需要更严谨的定义:信号系统:仓位管理系统:执行系统:Python 实现框架 (以简化的回测为例)我们将使用 处理数据,并模拟策略逻辑。假设我们有日线数据 (Open, High, Low, Close, Volume)。代码说明与实盘注意事项:总结:这个Python框架提供了一个基于马丁格尔思想的CTA策略雏形。它包含了核心的加仓逻辑,并加入了至关重要的风险控制措施(最大加仓次数和总止损)。请注意:马丁格尔策略,即使在股票市场应用并
2025-04-21 02:29:01
359
原创 结合CTA策略开发的实际场景,用Python举例说明凯利公式的不同应用方式
当CTA系统包含多个子策略或交易多个不相关(或低相关)的市场时,直接应用单一凯利比例可能不是最优的。理论上需要使用更复杂的组合凯利公式(涉及协方差矩阵)。这些例子提供了一个从基础到进阶应用凯利公式的框架。在实际开发中,你需要根据策略的具体特点、数据的质量和自身的风险管理要求来选择和调整最适合的方法。策略回测完成后,基于整个回测期的表现计算一次凯利比例,并使用一个固定的折扣因子(分数凯利)。,使得单次交易的最大预期损失(通常基于ATR止损)大致等于这个风险预算。这是CTA中非常常见和实用的方法。
2025-04-21 02:26:44
342
原创 量化炼金术:深入解析CTA与多因子策略回测评价指标及实战经验
精通回测评价指标及其解读,是量化研究者从入门到精通的必经之路。它帮助我们量化地认识策略的收益潜力、风险特征、优势与短板。然而,我们必须清醒地认识到,历史回测的成功并不保证未来的盈利。市场在变,模型需要不断迭代。将严谨的回测评价与对市场深刻的理解、对风险持续的敬畏相结合,辅以强大的执行力和纪律性,才能在量化投资这条充满挑战与机遇的道路上行稳致远。希望本文能为您构建强大的量化策略评价体系提供有益的参考。
2025-04-21 02:19:52
729
原创 驾驭市场脉搏:深入解析六大量化交易波动率指标及其Python实现
从 ATR 的直接波动幅度量度,到布林带的统计边界,再到唐奇安通道的突破识别,以及凯尔特纳、查金、RVI 等提供的不同视角,每种工具都有其独特的价值和适用场景。RVI 的设计初衷与相对强弱指数(RSI)类似,但它衡量的是价格标准差的方向性,而非价格变动的方向性。ATR 旨在衡量特定周期内价格的平均波动幅度,它通过综合考虑最高价与最低价的差、最高价与前一收盘价的差的绝对值、以及最低价与前一收盘价的差的绝对值这三者中的最大值(即真实波幅 True Range, TR),然后对其进行移动平均计算得出。
2025-04-21 02:08:07
350
原创 量化交易:从入门到实践的探索之路
二是**“任务的模糊性”与“反馈的滞后性”**。无论是希望转行的朋友,还是想提升交易能力的同行,常常会遇到一些共性的困惑。这个过程就像“干中学,学中干”,在不断试错、反馈、修正的过程中,能力会螺旋式上升。但随着实践深入,你会发现,将理论和想法转化为稳定、高效、可落地的代码和系统的能力,才是决定成败的瓶颈。金融背景固然有优势,但数学、物理、工程甚至其他看似不相关的学科背景,都可能带来独特的视角和解决问题的能力。构建高效、可复用、可扩展的模块,像搭积木一样灵活组合,才能快速响应市场变化,实现高效的投研迭代。
2025-04-21 01:37:27
639
原创 量化交易:从新手到老兵的必经之路与潜在陷阱
量化交易的成功,不仅在于找到有效的Alpha,更在于深刻理解并规避前进道路上的每一个潜在陷阱,以严谨的态度和持续的学习,在充满不确定性的市场中稳步前行。量化交易并非一蹴而就的提款机,它是一项严肃的系统工程,每个环节都可能成为策略的“阿喀琉斯之踵”。特别是随着机器学习等复杂工具的引入,虽然带来了新的可能性,但也放大了数据处理不当、模型过拟合、逻辑谬误等风险,使得陷阱更加隐蔽和难以察觉。除了上述流程中的陷阱,合理的资金管理和风险控制是策略能否长期生存的关键。将有效的因子组合成最终的交易模型,同样面临诸多挑战。
2025-04-21 01:30:26
817
原创 CTA策略回测的“隐形杀手”:深入解析未来函数与价格偷窥陷阱
未来函数和价格偷窥是CTA策略回测中常见的“甜蜜陷阱”。它们看似能让策略报告光鲜亮丽,实则掩盖了致命缺陷。唯有保持清醒的头脑,遵循严谨的逻辑,以贴近现实的态度进行回测,才能真正筛选和优化出具有实战价值的交易策略。在量化交易的征途上,避开这些隐形的暗礁,是驶向成功的必要一步。
2025-04-21 01:22:05
287
原创 海龟交易法则 (Turtle Trading Strategy) 深入解析
海龟交易法则是量化交易史上的一个里程碑,其核心在于纪律性地跟踪趋势并进行严格的风险管理。虽然原始系统设计为独立运行,但其核心突破逻辑可以与现代技术分析中的其他指标(如MA、ADX、RSI、成交量等)相结合,尝试过滤噪音、适应不同市场环境或优化入场/出场。关键在于理解结合的。
2025-04-21 00:30:16
1125
原创 布林带 (Bollinger Bands) 深入解析
布林带是一个强大的、动态衡量波动性和相对价格的工具。它的“收窄(Squeeze)”信号尤其有价值,预示着潜在的大幅波动。然而,单靠布林带难以确定突破方向或区分趋势持续与反转。通过结合RSI、成交量、趋势指标(MA/MACD)等,可以大大提高布林带信号的可靠性,构建出更全面的CTA策略。例如,利用RSI确认超买超卖及背离,利用成交量确认突破强度,利用趋势指标过滤交易方向。选择合适的指标组合取决于你的交易目标(如捕捉反转、跟踪趋势、交易突破)和市场环境。
2025-04-21 00:23:35
1435
原创 RSI (Relative Strength Index) 相对强弱指数深入解析
RSI是一个强大的动量震荡指标,但单独使用时有其局限性,尤其是在强趋势市场中。通过将其与趋势指标(如MA/EMA)、波动性指标(如布林带)、动量指标(如MACD)或量价指标(如成交量/OBV)相结合,可以构建出更稳健、适应性更强的CTA策略。选择哪种组合取决于策略的目标(趋势跟踪、均值回归等)以及交易的品种和周期。Python及其生态库(Pandas, TA-Lib, Matplotlib等)为实现和测试这些策略提供了强大的工具。记住,任何策略都需要经过严格的回测和优化,并结合健全的风险管理才能应用于实盘。
2025-04-21 00:17:32
1053
原创 趋势交易的双引擎:精通风险控制与资金部署的策略与代码实践
你需要理解其背后的逻辑,结合你的交易品种、时间周期和风险偏好,通过大量的回测和实践,找到最适合你的那套“双引擎”配置。我们将超越“何时入场”的迷思,聚焦于如何通过严谨的风险控制策略和科学的资金管理方法,为你的趋势交易系统构建坚实的护城河,并提供多种具体算法及其Python实现示例,助你从理念走向实践。如果使用固定的点数或金额作为止损,在高波动市场中可能频繁触及,而在低波动市场中则可能过于宽松,承担了不必要的风险敞口。趋势跟踪的圣杯,不在于某个神秘的入场信号,而在于日复一日对风险的敬畏和对资金的精细管理。
2025-04-21 00:06:49
948
原创 超越代码:量化交易的深度求索与认知进化
量化交易,在许多人眼中,是冰冷代码与金融市场的结合,是算法自动执行买卖指令的精密机器。本文旨在超越基础的“信号-执行”框架,探讨量化交易者在认知层面需要达到的深度,以及先进算法在这一求索过程中的角色与挑战。量化交易的深度之旅,远非编写几行代码那么简单。它要求交易者具备数学统计的严谨、编程实现的精巧、金融市场的洞察、风险管理的审慎,以及最重要的——对知识边界不断探索的好奇心和对市场永存的敬畏之心。在这个由数据、算法和人性共同塑造的竞技场中,唯有不断深化认知、拥抱变化、并坚守科学精神的探索者,方能行稳致远。
2025-04-20 23:11:04
655
原创 多因子模型水平测试题 程序和综合 解答
好的,我们来逐一探讨这些关于多因子模型程序实现、理论基础和行业思考的问题。程序 (Programming)综合 (Comprehensive Topics)选择建议总结:实践中,Python + C++ 的组合也很常见:用 Python 进行研究、分析和调用,用 C++ 实现性能敏感的核心计算部分。数据量估算 (10 年历史回测,A 股市场):运算量估算:主要瓶颈:通常在于风险协方差矩阵的估计/计算和大规模组合优化。数据 I/O 也可能是瓶颈。内存需求:面向过程 (Procedural Programmin
2025-04-20 00:35:31
944
原创 针对新手的 Thonny IDE 简明教程。Thonny 是一个特别为 Python 初学者设计的集成开发环境(IDE)
好的,这是一个针对新手的 Thonny IDE 简明教程。Thonny 是一个特别为 Python 初学者设计的集成开发环境(IDE),它界面简洁,自带 Python 解释器(可选),并且有强大的调试功能,非常适合入门。通过调试,你可以非常直观地理解代码的逻辑流程,尤其是循环、条件判断和变量变化。当你写的代码出现意想不到的结果时,调试是找出问题的最佳方法。Python 的强大之处在于有大量的第三方库。这是 Thonny 最适合初学者的功能。它可以让你看到代码是如何一步步执行的。工具 (Tools)
2025-04-20 00:35:22
956
原创 基于期货的**期限结构**、**大户持仓**这两个因子,并结合**量价因子**来开发量化CTA(商品交易顾问)策略
结合期限结构、大户持仓和量价因子开发 CTA 策略,可以从多个维度捕捉市场信息,构建更稳健、更多元化的量化交易系统。关键在于深入理解每个因子的经济含义,设计合理的逻辑将其融合,并通过严谨的回测和风控来验证和实施。建议从相对简单的逻辑(如因子过滤)入手,逐步迭代优化。来开发量化CTA(商品交易顾问)策略,是一个非常专业且有潜力的方向。但要注意,套保的主要目的是规避风险,而非方向性投机。考虑因素:跟随“聪明钱”或避免在情绪极端时入场。理由:基本面支持强势。理由:基本面支持弱势。
2025-04-20 00:35:14
522
原创 深度解析一下“红利低波”策略
选择红利低波策略时,应结合自身的投资目标、风险承受能力以及对市场环境的判断。同时,关注具体策略的构建细节和相关投资产品的特点也至关重要。随着中国资本市场的成熟和投资者结构的变化,红利低波策略有望在资产配置中扮演越来越重要的角色。红利低波策略是一种结合了价值和防御特征的有效投资策略。它通过筛选高股息、低波动的股票,力求在控制风险的前提下获取长期稳健的回报。好的,我们来深度解析一下“红利低波”策略(Dividend Low-Volatility Strategy)。红利低波策略是一种结合了。
2025-04-20 00:35:02
1185
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人