AKShare 教程 免费获取数据

AKShare教程

1. 什么是 AKShare?

  • 定义: AKShare 是一个基于 Python 的开源金融数据接口库。
  • 目标: 旨在为用户提供一个简洁、统一、易用的接口,以方便地获取来自网络上各种公开数据源的金融和经济数据。
  • 特点:
    • 免费开源: 完全免费使用,代码公开透明。
    • 数据广泛: 覆盖股票(A股、港股、美股)、期货(国内、国际)、期权、基金、债券、外汇、数字货币、宏观经济指标、行业数据、新闻舆情等多个领域。
    • 接口统一: 尽可能使用相似的函数命名和参数风格,降低学习成本。
    • 输出标准: 主要返回 Pandas DataFrame 格式,便于后续在 Python 中进行数据分析和处理。
    • 社区活跃: 有持续的更新和维护,能够较快地适应数据源的变化。

2. 安装 AKShare

安装非常简单,使用 pip 即可:

pip install akshare -i https://pypi.tuna.tsinghua.edu.cn/simple # 使用清华镜像源加速

或者直接使用官方源:

pip install akshare

建议定期更新以获取最新的数据接口和修复:

pip install --upgrade akshare

3. 核心使用方法

AKShare 的使用模式通常遵循以下步骤:

  • 导入库: import akshare as ak
  • 查找接口: 访问 AKShare 官方文档 (https://akshare.akfamily.xyz/https://akshare.readthedocs.io/),找到你需要的数据对应的函数接口。文档按数据类型分类,非常清晰。
  • 调用函数: 使用 ak.函数名() 并传入必要的参数(如股票代码 symbol、日期 start_date, end_date、周期 period 等)。
  • 处理数据: 函数通常会返回一个或多个 Pandas DataFrame,你可以直接对其进行分析、可视化或存储。

4. 主要数据模块及示例

AKShare 的数据接口极其丰富,这里列举一些最常用和代表性的模块:

  • 股票 (Stock)

    • A 股历史行情:ak.stock_zh_a_hist(symbol="000001", period="daily", start_date="20230101", end_date="20231231", adjust="qfq") (获取平安银行日线前复权数据)
    • 实时行情:ak.stock_zh_a_spot_em() (获取所有 A 股的实时行情 - 来自东方财富)
    • 板块数据:ak.stock_board_concept_name_em() (获取概念板块名称)
    • 个股基本信息:ak.stock_individual_info_em(symbol="000001")
    • 港股、美股:也有对应的 stock_hk_...stock_us_... 系列函数。
  • 期货 (Futures)

    • 国内期货历史行情:ak.get_futures_daily(start_date='20230101', end_date='20231231', market="CZCE") (获取郑商所所有品种日线数据)
    • 具体合约历史行情:ak.futures_zh_daily_sina(symbol="IF2407") (获取中证 IF2407 合约日线数据 - 来自新浪财经)
    • 主力合约映射:ak.futures_main_mapping_em() (获取东方财富的主力合约代码)
  • 基金 (Fund)

    • 公募基金净值:ak.fund_open_fund_info_em(fund="161725", indicator="单位净值走势") (获取某基金单位净值)
    • ETF 历史行情:ak.fund_etf_hist_em(symbol="510300") (获取沪深300ETF历史行情)
  • 宏观经济 (Macro)

    • 中国宏观数据:ak.macro_china_gdp_yearly() (获取中国年度 GDP 数据)
    • CPI/PPI:ak.macro_china_cpi_monthly() / ak.macro_china_ppi_monthly()
    • LPR 利率:ak.macro_china_lpr()
    • 美联储利率:ak.macro_usa_federal_fund_rate()
    • 全球宏观:提供来自 FRED、世界银行等的数据接口。
  • 数字货币 (Crypto)

    • 主流交易所行情:ak.crypto_hist(symbol='BTCUSDT', period='daily', start_date='20230101', end_date='20231231') (获取 BTC/USDT 日线数据 - 默认可能来自币安)
  • 其他

    • 外汇:ak.fx_pair_hist(symbol="USDCNH", period="daily", start_date="...")
    • 债券:ak.bond_zh_cov_daily(symbol="128013") (可转债日线)
    • 新闻:ak.js_news(channel="头条") (获取金十数据快讯)

5. 常用参数说明

  • symbol: 标的代码,如股票代码 ‘600519’,期货合约 ‘IF2407’,基金代码 ‘161725’ 等。具体格式需参考函数文档。
  • period: 数据周期,常用 ‘daily’ (日线), ‘weekly’ (周线), ‘monthly’ (月线),部分接口支持分钟线 (‘1’, ‘5’, ‘15’, ‘30’, ‘60’)。
  • start_date, end_date: 起始和结束日期,格式通常为 ‘YYYYMMDD’ 或 ‘YYYY-MM-DD’。
  • adjust: 复权选项(主要用于股票),‘qfq’ (前复权), ‘hfq’ (后复权), ‘’ 或 None (不复权)。

6. 优势总结

  • 一站式获取: 极大简化了从不同网站手动爬取或寻找 API 的过程。
  • 易于集成: 返回 Pandas DataFrame,无缝对接 Python 数据科学生态(NumPy, SciPy, Matplotlib, Scikit-learn 等)。
  • 持续更新: 社区维护,能较快修复失效接口和增加新数据源。
  • 学习成本低: 对于有 Python 和 Pandas 基础的用户来说上手很快。

7. 注意事项与局限性

  • 数据源稳定性: AKShare 依赖于公开的网络数据源。如果源网站改版、限制访问或关闭,对应接口可能会失效,需要等待库作者更新。
  • 数据准确性与及时性: 数据来源于公开网络,其准确性和实时性可能不如专业的付费金融数据终端(如 Wind, Bloomberg)。对于高频交易等场景,需谨慎评估。
  • 潜在的访问限制: 短时间内大量、频繁地调用某些接口,可能会触发数据源网站的反爬虫机制,导致 IP 被临时封禁。建议合理设置请求间隔。
  • 接口变化: 随着库的迭代,函数名、参数或返回的数据结构可能会有微调,更新版本后需注意兼容性。
  • 文档依赖: 由于接口众多且参数各异,强烈依赖官方文档来查找和确认具体用法。

8. 学习资源

总结

AKShare 是一个功能强大且极具价值的 Python 金融数据工具,特别适合个人量化爱好者、金融研究人员、学生以及需要便捷获取各类金融数据的开发者。它极大地降低了金融数据获取的门槛。掌握其基本使用方法,并善用官方文档,你就能轻松地将丰富的金融数据融入到你的分析和应用中。但同时也要注意其数据源依赖性和潜在的限制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值