虚拟币用到的非常哇塞的技术(深度区块链分析)解读

python编程示例系列
python编程示例系列二
python的Web神器Streamlit
如何应聘高薪职位
C#视觉应用开发问题系列
c#串口应用开发问题系列
microPython Python最小内核源码解析
NI-motion运动控制c语言示例代码解析
在这里插入图片描述# 深度区块链分析技术详解

一、用途与原理

深度区块链分析是一种用于追踪、分析和理解区块链上交易行为的技术。在虚拟货币领域,这项技术有着广泛的应用。

主要用途:

  1. 交易追踪:追踪特定地址的资金流向,建立资金流动图谱
  2. 身份关联:通过交易模式识别关联地址,推断可能属于同一实体
  3. 异常检测:识别可疑交易模式,发现潜在的非法活动
  4. 市场分析:分析大额交易和鲸鱼行为,预测市场趋势
  5. 风险评估:为交易所、金融机构提供地址风险评分

基本原理:

深度区块链分析结合了数据抓取、图数据库技术和机器学习算法,通过以下步骤实现:

  1. 从区块链网络获取交易数据
  2. 构建地址和交易的关系图
  3. 应用聚类算法识别地址簇
  4. 利用启发式规则和机器学习模型分析交易模式
  5. 生成可视化结果和分析报告

二、实现代码示例

以下是一个基于Python的深度区块链分析工具实现示例,主要针对比特币区块链:

import requests
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd
from datetime import datetime
import time
from sklearn.cluster import DBSCAN
import numpy as np

class BlockchainAnalyzer:
    def __init__(self):
        # 初始化区块链分析器
        self.api_base_url = "https://blockchain.info/"  # 使用公共API
        self.graph = nx.DiGraph()  # 创建有向图用于表示交易网络
        self.address_features = {}  # 存储地址特征
        self.clustered_addresses = {}  # 存储聚类结果
        
    def fetch_address_info(self, address):
        """
        获取特定比特币地址的交易信息
        
        参数:
            address: 比特币地址
        返回:
            地址的交易数据
        """
        try:
            # 通过API获取地址信息
            url = f"{self.api_base_url}rawaddr/{address}"
            response = requests.get(url)
            if response.status_code == 200:
                return response.json()
            else:
                print(f"获取地址信息失败: {response.status_code}")
                return None
        except Exception as e:
            print(f"获取地址信息时出错: {e}")
            return None
    
    def fetch_transaction_info(self, tx_hash):
        """
        获取特定交易的详细信息
        
        参数:
            tx_hash: 交易哈希
        返回:
            交易详细数据
        """
        try:
            # 通过API获取交易信息
            url = f"{self.api_base_url}rawtx/{tx_hash}"
            response = requests.get(url)
            if response.status_code == 200:
                return response.json()
            else:
                print(f"获取交易信息失败: {response.status_code}")
                return None
        except Exception as e:
            print(f"获取交易信息时出错: {e}")
            return None
    
    def build_transaction_graph(self, seed_address, depth=2):
        """
        构建以种子地址为起点的交易网络图
        
        参数:
            seed_address: 起始地址
            depth: 追踪深度,默认为2
        """
        # 待处理的地址队列
        addresses_to_process = [(seed_address, 0)]
        processed_addresses = set()
        processed_txs = set()
        
        # 广度优先搜索构建交易图
        while addresses_to_process:
            current_address, current_depth = addresses_to_process.pop(0)
            
            # 如果已达到最大深度或地址已处理,则跳过
            if current_depth > depth or current_address in processed_addresses:
                continue
                
            processed_addresses.add(current_address)
            print(f"处理地址: {current_address}, 深度: {current_depth}")
            
            # 获取地址信息
            address_data = self.fetch_address_info(current_address)
            if not address_data:
                continue
                
            # 提取地址特征
            self.extract_address_features(current_address, address_data)
            
            # 处理地址的交易
            for tx in address_data.get('txs', []):
                tx_hash = tx['hash']
                
                if tx_hash in processed_txs:
                    continue
                    
                processed_txs.add(tx_hash)
                
                # 处理交易输入
                for tx_input in tx.get('inputs', []):
                    if 'prev_out' in tx_input and 'addr' in tx_input['prev_out']:
                        input_address = tx_input['prev_out']['addr']
                        input_value = tx_input['prev_out']['value'] / 100000000  # 转换为BTC
                        
                        # 添加交易边到图中
                        self.graph.add_edge(input_address, current_address, 
                                           tx_hash=tx_hash, 
                                           value=input_value, 
                                           timestamp=tx['time'])
                        
                        # 如果深度未达到最大,将新地址加入待处理队列
                        if current_depth < depth and input_address not in processed_addresses:
                            addresses_to_process.append((input_address, current_depth + 1))
                
                # 处理交易输出
                for tx_output in tx.get('out', []):
                    if 'addr' in tx_output:
                        output_address = tx_output['addr']
                        output_value = tx_output['value'] / 100000000  # 转换为BTC
                        
                        # 添加交易边到图中
                        self.graph.add_edge(current_address, output_address, 
                                           tx_hash=tx_hash, 
                                           value=output_value, 
                                           timestamp=tx['time'])
                        
                        # 如果深度未达到最大,将新地址加入待处理队列
                        if current_depth < depth and output_address not in processed_addresses:
                            addresses_to_process.append((output_address, current_depth + 1))
            
            # 避免API请求过于频繁
            time.sleep(1)
    
    def extract_address_features(self, address, address_data):
        """
        从地址数据中提取特征
        
        参数:
            address: 比特币地址
            address_data: 地址的交易数据
        """
        # 提取基本特征
        features = {
            'total_received': address_data.get('total_received', 0) / 100000000,
            'total_sent': address_data.get('total_sent', 0) / 100000000,
            'final_balance': address_data.get('final_balance', 0) / 100000000,
            'n_tx': address_data.get('n_tx', 0)
        }
        
        # 计算高级特征
        txs = address_data.get('txs', [])
        if txs:
            # 交易时间间隔
            timestamps = sorted([tx['time'] for tx in txs])
            if len(timestamps) > 1:
                time_diffs = [timestamps[i+1] - timestamps[i] for i in range(len(timestamps)-1)]
                features['avg_time_between_txs'] = sum(time_diffs) / len(time_diffs)
                features['min_time_between_txs'] = min(time_diffs)
                features['max_time_between_txs'] = max(time_diffs)
            
            # 交易金额统计
            values = []
            for tx in txs:
                for output in tx.get('out', []):
                    if 'value' in output:
                        values.append(output['value'] / 100000000)
            
            if values:
                features['avg_tx_value'] = sum(values) / len(values)
                features['min_tx_value'] = min(values)
                features['max_tx_value'] = max(values)
                features['std_tx_value'] = np.std(values)
        
        self.address_features[address] = features
    
    def cluster_addresses(self, eps=0.5, min_samples=5):
        """
        使用DBSCAN算法对地址进行聚类
        
        参数:
            eps: DBSCAN的邻域半径参数
            min_samples: DBSCAN的最小样本数参数
        """
        # 准备特征矩阵
        addresses = list(self.address_features.keys())
        feature_names = ['total_received', 'total_sent', 'final_balance', 'n_tx']
        
        # 确保所有地址都有这些特征
        feature_matrix = []
        for addr in addresses:
            features = self.address_features[addr]
            feature_vector = [features.get(f, 0) for f in feature_names]
            feature_matrix.append(feature_vector)
        
        # 特征标准化
        feature_matrix = np.array(feature_matrix)
        feature_matrix = (feature_matrix - feature_matrix.mean(axis=0)) / feature_matrix.std(axis=0)
        
        # 应用DBSCAN聚类
        clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(feature_matrix)
        labels = clustering.labels_
        
        # 整理聚类结果
        for i, addr in enumerate(addresses):
            cluster_id = labels[i]
            if cluster_id not in self.clustered_addresses:
                self.clustered_addresses[cluster_id] = []
            self.clustered_addresses[cluster_id].append(addr)
        
        # 输出聚类结果
        print(f"识别出 {len(self.clustered_addresses)} 个地址簇")
        for cluster_id, addrs in self.clustered_addresses.items():
            if cluster_id != -1:  # -1表示噪声点
                print(f"簇 {cluster_id}: {len(addrs)} 个地址")
    
    def detect_anomalies(self):
        """
        检测异常交易模式
        
        返回:
            异常交易列表
        """
        anomalies = []
        
        # 计算每条边的特征
        for u, v, data in self.graph.edges(data=True):
            # 大额交易检测
            if data.get('value', 0) > 10:  # 超过10 BTC的交易
                anomalies.append({
                    'type': 'large_transaction',
                    'from': u,
                    'to': v,
                    'tx_hash': data.get('tx_hash'),
                    'value': data.get('value'),
                    'timestamp': data.get('timestamp')
                })
            
            # 检测快速转移模式
            out_edges = list(self.graph.out_edges(v, data=True))
            if len(out_edges) == 1:
                next_edge = out_edges[0]
                curr_time = data.get('timestamp', 0)
                next_time = next_edge[2].get('timestamp', 0)
                
                # 如果在短时间内(1小时内)转出接近相同金额
                if 0 < next_time - curr_time < 3600 and abs(next_edge[2].get('value', 0) - data.get('value', 0)) < 0.1 * data.get('value', 0):
                    anomalies.append({
                        'type': 'quick_transfer',
                        'path': [u, v, next_edge[1]],
                        'value_in': data.get('value'),
                        'value_out': next_edge[2].get('value'),
                        'time_diff': next_time - curr_time
                    })
        
        return anomalies
    
    def visualize_transaction_graph(self, output_file="transaction_graph.png"):
        """
        可视化交易网络图
        
        参数:
            output_file: 输出图像文件名
        """
        plt.figure(figsize=(12, 10))
        
        # 使用不同颜色表示不同簇
        colors = {}
        for cluster_id, addrs in self.clustered_addresses.items():
            for addr in addrs:
                colors[addr] = cluster_id
        
        # 设置节点颜色
        node_colors = [colors.get(node, -1) for node in self.graph.nodes()]
        
        # 设置边的宽度根据交易金额
        edge_widths = [data.get('value', 1) * 0.1 + 0.1 for _, _, data in self.graph.edges(data=True)]
        
        # 绘制网络图
        pos = nx.spring_layout(self.graph)
        nx.draw_networkx(
            self.graph, 
            pos, 
            with_labels=False, 
            node_size=50, 
            node_color=node_colors, 
            width=edge_widths, 
            edge_color='gray', 
            arrows=True,
            cmap=plt.cm.jet
        )
        
        plt.title("比特币交易网络图")
        plt.axis('off')
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()
        
        print(f"交易网络图已保存到 {output_file}")
    
    def generate_report(self):
        """
        生成分析报告
        
        返回:
            分析报告字典
        """
        report = {
            'graph_stats': {
                'nodes': self.graph.number_of_nodes(),
                'edges': self.graph.number_of_edges(),
                'clusters': len([k for k in self.clustered_addresses.keys() if k != -1])
            },
            'anomalies': self.detect_anomalies(),
            'clusters': {k: len(v) for k, v in self.clustered_addresses.items() if k != -1},
            'high_value_addresses': []
        }
        
        # 找出高价值地址
        for addr, features in self.address_features.items():
            if features.get('final_balance', 0) > 1:  # 余额超过1 BTC
                report['high_value_addresses'].append({
                    'address': addr,
                    'balance': features.get('final_balance'),
                    'total_received': features.get('total_received'),
                    'transaction_count': features.get('n_tx')
                })
        
        # 按余额排序
        report['high_value_addresses'].sort(key=lambda x: x['balance'], reverse=True)
        
        return report


# 使用示例
if __name__ == "__main__":
    # 创建分析器实例
    analyzer = BlockchainAnalyzer()
    
    # 设置起始地址(这里使用一个示例地址)
    seed_address = "1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa"  # 中本聪的第一个地址
    
    # 构建交易网络
    print("正在构建交易网络...")
    analyzer.build_transaction_graph(seed_address, depth=2)
    
    # 聚类分析
    print("正在进行地址聚类...")
    analyzer.cluster_addresses()
    
    # 异常检测
    print("正在检测异常交易...")
    anomalies = analyzer.detect_anomalies()
    print(f"发现 {len(anomalies)} 个异常交易")
    
    # 可视化
    print("正在生成可视化图表...")
    analyzer.visualize_transaction_graph()
    
    # 生成报告
    print("正在生成分析报告...")
    report = analyzer.generate_report()
    
    # 输出报告摘要
    print("\n===== 分析报告摘要 =====")
    print(f"总节点数: {report['graph_stats']['nodes']}")
    print(f"总边数: {report['graph_stats']['edges']}")
    print(f"地址簇数: {report['graph_stats']['clusters']}")
    print(f"异常交易数: {len(report['anomalies'])}")
    print(f"高价值地址数: {len(report['high_value_addresses'])}")
    if report['high_value_addresses']:
        print("\n前5个高价值地址:")
        for i, addr_info in enumerate(report['high_value_addresses'][:5]):
            print(f"{i+1}. {addr_info['address']}: {addr_info['balance']} BTC")

三、代码逻辑流程图

异常检测
聚类分析
特征提取
构建交易网络
检测快速转移模式
检测大额交易
检测分散/聚合模式
特征标准化
准备特征矩阵
应用DBSCAN算法
整理聚类结果
计算交易时间特征
计算基本特征
计算交易金额特征
处理交易输入输出
获取地址交易信息
建立地址间关系
递归追踪相关地址
开始分析
初始化区块链分析器
设置种子地址
构建交易网络图
提取地址特征
地址聚类分析
异常交易检测
生成可视化图表
生成分析报告
输出分析结果

四、应用场景

深度区块链分析技术在以下场景中有广泛应用:

1. 金融监管与合规

  • 反洗钱(AML):追踪可疑资金流向,识别洗钱链条
  • 了解你的客户(KYC):帮助交易所识别高风险用户
  • 制裁执行:识别与受制裁实体相关的地址

2. 犯罪调查

  • 勒索软件追踪:跟踪勒索软件赎金支付流向
  • 暗网市场分析:识别暗网市场的资金流动
  • 诈骗调查:分析诈骗案件中的资金流向

3. 市场分析与交易策略

  • 鲸鱼监控:追踪大户行为,预测市场波动
  • 交易模式识别:识别市场操纵行为
  • 流动性分析:评估特定代币的真实流动性

4. 风险管理

  • 交易所风险评估:评估交易所安全状况
  • 借贷协议风险分析:评估DeFi协议的风险敞口
  • 智能合约分析:识别潜在的合约漏洞和风险

5. 学术研究

  • 区块链经济学研究:分析区块链上的经济行为
  • 网络拓扑研究:研究区块链网络的结构特性
  • 用户行为分析:研究不同类型用户的行为模式

五、总结

深度区块链分析技术通过结合数据科学、图论和机器学习,为区块链交易数据提供了前所未有的可视化和分析能力。该技术不仅可以追踪资金流向,还能识别复杂的交易模式和相关实体。

本文介绍的区块链分析工具实现了以下核心功能:

  1. 基于种子地址构建交易网络图
  2. 提取地址特征并进行聚类分析
  3. 检测异常交易模式
  4. 生成可视化结果和分析报告

随着区块链技术的发展和应用场景的扩大,深度区块链分析将在金融监管、犯罪调查、市场分析和风险管理等领域发挥越来越重要的作用。同时,这也引发了关于隐私保护和匿名性的讨论,推动了隐私增强技术的发展。

未来,深度区块链分析技术将继续演进,结合更先进的机器学习算法和大数据处理技术,提供更精确的分析结果,并扩展到更多的应用场景中。

c#视觉应用开发中如何在C#中实现光流(Optical Flow)算法?
车载系统软件工程师如何处理车载系统的系统性能监控
C#进行串口应用开发如何优化串口通信的实时性与吞吐量
python的生成器和迭代器
开源 AI库Stable Diffusion 介绍
c#视觉应用开发中如何使用OpenCV库进行计算机视觉处理?
通过开放数据和Python拯救世界
BNF 语法描述
python的aria2p库介绍
python 把字符串当数组来操作就对了
python如何操作excel
量化交易系统中如何处理回撤期间的风险管理?
microPython的源码解析之 objboundmeth.c
python怎样检测网络路由
车载系统软件工程师如何实现车载系统的高精度定位和导航
量子计算Deutsch-Josza算法
C#进行串口应用开发如何实现串口通信的自动重连与重传功能
车载系统软件工程师如何实现车载系统的音频处理和优化
python生成PDF文档的库reportlab
windows程序在后台运行有几种开发方法
c#视觉应用开发中如何在C#中进行图像去干扰?
NI-Motion 如何等待一个IO线路变为高电平信号,然后移动指定的轴到一个新的位置的C语言代码示例
C#进行串口应用开发如何实现基于串口的虚拟串口映射和串口共享
未来十年国产替代是程序猿的黄金赛道
c#视觉应用开发中如何在C#中进行图像色彩平衡?
利用qt及 c++语言如何计算KDJ技术指标,请给出示例代码
运动控制卡的运动控制介绍
车载系统软件工程师如何实现车载系统的交通信息集成和显示
microPython的源码解析之 stream.c
microPython的源码解析之 emitinlinethumb.c
车载系统软件工程师如何实现车载系统的防盗和安全系统
如何反汇编和分析Python字节码,了解代码的执行过程
python如何实现π计算,可以指定精度
如何将列的数字编号,转化为EXcel的字母表示的列编号
C#进行串口应用开发如何检测电脑是否有串口
python的非常灵活和方便的缓存库cachetools
python在Web应用程序中安全地转义和渲染HTML的库MarkupSafe
C#进行串口应用开发如何实现基于串口的终端工具与远程控制
自动化工具软件详细列举
openai的的API如何使用
openai和alphago什么关系
C#进行串口应用开发如何处理串口通信因长度不匹配导致的数据截断问题
车载系统软件工程师如何实现车载系统的人机界面(HMI)
NI-Motion如何设置一个周期性断点,当运动轴到达预设的目标位置时,会在周期性断点位置暂停,然后继续运动直到再次到达目标位置的C语言代码示例
智能农业设备软件工程师如何集成和管理农业设备的传感器数据分析
开源的AI算法可以进行物体识别,动物识别
量化交易系统中+如何设计和实现量化交易策略?
python开发 macOS 和 iOS 平台上的应用程序库PyObjC
C#进行串口应用开发如何捕获串口通信接口的异常错误信息
python的库xlwings如何使用
c#视觉应用开发中如何在C#中进行图像去混叠?
c#语言利用GPU进行加速计算
microPython的源码解析之 objmap.c
Python为命令行界面(CLI)工具自动生成解析器的库Docopt
车载系统软件工程师如何处理车载系统的环境感知和响应
Python pygame库开发的射击小游戏(二娃大战外星人)完整示例.
C#进行串口应用开发如何实现串口通信的校验与数据校正
C#进行串口应用开发如何通过串口实现模拟串口的虚拟化
量化交易系统中+如何设计和实现高频交易算法?
智能农业设备软件工程师如何实现农业设备的驾驶员辅助功能
智能农业设备软件工程师如何实现农业数据的云存储和备份
Python如何编写一个钢琴弹奏软件,操作MIDI设备的详细流程
linux的如何管理网络端口及访问权限,与window比较区别在哪儿
量化交易系统中+如何处理算法交易中的竞价和撮合机制?
智能农业设备软件工程师如何实现农业机器人路径规划
C#进行串口应用开发如何调试因串口通信异常导致的系统死机问题
C#进行串口应用开发如何分析系统中串口通信的实时性与稳定性
Python 是 Rackspace 的核心技术
车载系统软件工程师如何实现车载系统的OTA安全性和完整性验证
Python如何创造可变形的地形的完整示例.
量化交易系统中+如何扩展系统以支持更多用户和更大交易量?
SSH服务以及pxssh的使用
量化交易系统中+如何确保系统的安全性和防止黑客攻击?
python如何非常快速地为机器学习模型创建可交互的 Web 应用
C#进行串口应用开发如何设置串口的超时时间
NI-Motion 如何设置一个或多个断点,并通过 RTSI 线路(实时信号接口)来监控和响应这些断点的C语言示例代码
Python如何测网速
怎么用 python 代码实现简易聊天室?
python如何用OPencv进行斑点检测(Blobs)
C#进行串口应用开发如何获取电脑上所有可用的串口号
车载系统软件工程师如何实现车载系统的触摸屏控制和反馈
microPython的源码解析之 emitinlinethumb.c
c#视觉应用开发中如何使用C#进行人脸检测?
c++加QT如何操作RS485接口
c#视觉应用开发中如何在C#中进行图像深度估计?
量化交易策略 趋势突破
智能农业设备软件工程师如何处理设备的启动时间和响应速度优化
microPython的源码解析之 pairheap.c
python web应用开发神器 入门十三
NI-Motion如何实现一个旋转刀片(Rotating Knife)的应用的C语言示例代码
量化交易系统中+如何分析订单簿数据(Level 2数据)?
Union Investment如何利用Python和机器学习(ML)技术来改进其投资流程
Python如何为Journyx Timesheet提供动力。
智能农业设备软件工程师如何实现农业设备的故障预测和预防
C#进行串口应用开发如何优化串口通信的实时性能
microPython的源码解析之 objint.c
python 随机投影(Random Projection,简称RP)
OpenCV的图像分割分水岭算法(watershed algorithm)示例
c#视觉应用开发中如何在C#中进行图像增强?
C#进行串口应用开发如何通过串口实现设备的远程控制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值