POJ_2992

//============================================================================
// Name        : POJ_2992.cpp
// Author      : tiger
// Version     :
// Copyright   : Your copyright notice
// Description : 1.约数个数定理:设n的标准质因数分解为n=p1^a1*p2^a2*...*pm^am,
//     则n的因数个数=(a1+1)*(a2+1)*...*(am+1).
//    2.n!的素因子 = (n-1)!的素因子 + n的素因子
//    3.c(n,k)的素因子分解 = n!的素因子- (n-k)!的素因子 - k!的素因子
//============================================================================

#include <iostream>
#include <stdio.h>
using namespace std;
int primedivisor[432][432];//n!的素因子分解
bool isprime[432];//432以内的的所有素数
void prime()//求出432以内的所有素数
{
 memset(isprime,true,sizeof(isprime));
 int j,i;
 for(i = 2; i < 432; i++)
 {
  if(isprime[i])
  {

   j = 2;
   while(j*i < 432)
   {
    isprime[j * i] = false;
    j++;
   }
  }
 }

}
void intial()
{
 prime();
 memset(primedivisor,0,sizeof(primedivisor));
 int i,j,t;
 for(i = 1; i < 432 ; i++)
 {
  for(j = 0; j  <= i; j++)
   primedivisor[i][j] = primedivisor[i-1][j];
  t = i;
  for(j = 2; j < 432 && t > 1; j++)
  {
   if(isprime[j])
   {
    while(t%j==0)
    {
     primedivisor[i][j]++;
     t /=j;
    }
   }
  }
 }
}
int main() {
  intial();
  freopen("in","r",stdin);
  int n,k,i;
  long long ans = 1;

  while(scanf("%d %d",&n,&k) != EOF)
  {
   ans = 1;
   for(i = 2; i <=n; i++)
   {
    if(isprime[i])
    ans *= (primedivisor[n][i] - primedivisor[k][i] - primedivisor[n-k][i] +1);
   }
   printf("%lld/n",ans);
  }
 return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值