目录
9 并发粒度优化
当Segment中某一个Cuboid的大小超出一定的阈值时,系统会将该Cuboid的数据分片到多个分区中,以实现Cuboid数据读取的并行化,从而优化Cube的查询速度。具体的实现方式如下:构建引擎根据Segment估计的大小,以及参数“kylin.hbase.region.cut”的设置决定Segment在存储引擎中总共需要几个分区来存储,如果存储引擎是HBase,那么分区的数量就对应于HBase中的Region数量。kylin.hbase.region.cut的默认值是5.0,单位是GB,也就是说对于一个大小估计是50GB的Segment,构建引擎会给它分配10个分区。用户还可以通过设置kylin.hbase.region.count.min(默认为1)和kylin.hbase.region.count.max(默认为500)两个配置来决定每个Segment最少或最多被划分成多少个分区。
由于每个Cube的并发粒度控制不尽相同,因此建议在Cube Designer 的Configuration Overwrites(上图所示)中为每个Cube量身定制控制并发粒度的参数。假设将把当前Cube的kylin.hbase.region.count.min设置为2,kylin.hbase.region.count.max设置为100。这样无论Segment的大小如何变化,它的分区数量最小都不会低于2,最大都不会超过100。相应地,这个Segment背后的存储引擎(HBase)为了存储这个Segment,也不会使用小于两个或超过100个的分区。我们还调整了默认的kylin.hbase.region.cut,这样50GB的Segment基本上会被分配到50个分区,相比默认设置,我们的Cuboid可能最多会获得5倍的并发量。
10 自动构建cube脚本
#!/bin/bash
cube_name=order_cube
do_date=`date -d '-1 day' +%F`
#获取00:00时间戳
start_date_unix=`date -d "$do_date 08:00:00" +%s`
start_date=$(($start_date_unix*1000))
#获取24:00的时间戳
stop_date=$(($start_date+86400000))
curl -X PUT -H "Authorization: Basic QURNSU46S1lMSU4=" -H 'Content-Type: application/json' -d '{"startTime":'$start_date', "endTime":'$stop_date', "buildType":"BUILD"}' http://hadoop102:7070/kylin/api/cubes/$cube_name/build