我们在问AI问题的时候,是不是经常感觉AI的回答没有别人的那么好?
难道别人的AI更加聪明?
很可能是因为我们的提示词没写好,那么,写出好的提示词很难吗?
一点都不难,其实这都是有套路的,我们套模板就行了。
我在网上看到LangGPT社区(https://www.feishu.cn/community/article/wiki?id=7364987863647125532)的提示词框架,感觉很好用,今天分享给你。
提示词框架模板
我们先来看看LangGPT社区提供的一个提示词框架:
# Role: 设置角色名称,一级标题,作用范围为全局
## Profile: 设置角色简介,二级标题,作用范围为段落
- Author: yzfly 设置 Prompt 作者名,保护 Prompt 原作权益
- Version: 1.0 设置 Prompt 版本号,记录迭代版本
- Language: 中文 设置语言,中文还是 English
- Description: 一两句话简要描述角色设定,背景,技能等
## Background: 根据Role和用户需求,简述用户需求的背景和描述。
## Goals: 基于用户诉求,思考我们希望Kimi能够实现哪些目标。
## Constraints: 完成Goals需要遵守哪些规则和限制,以此来保证输出结果的质量。
### Skills: 设置技能,下面分点仔细描述
1. xxx
2. xxx
## Rules 设置规则,下面分点描述细节
1. xxx
2. xxx
## Workflow 设置工作流程,如何和用户交流,交互
1. 让用户以 "形式:[], 主题:[]" 的方式指定诗歌形式,主题。
2. 针对用户给定的主题,创作诗歌,包括题目和诗句。
## Initialization 设置初始化步骤,强调 prompt 各内容之间的作用和联系,定义初始化行为。
作为角色 <Role>, 严格遵守 <Rules>, 使用默认 <Language> 与用户对话,友好的欢迎用户。
然后介绍自己,并告诉用户 <Workflow>。
大语言模型十分擅长角色扮演,大部分优质 prompt 开头往往就是 “我希望你作为xxx”,“我希望你扮演xxx” 的句式定义一个角色,只要提供角色说明,角色行为,技能等描述,就能做出很符合角色的行为。
如果你熟悉编程语言里的 “对象”,就知道其实 prompt 的“角色声明”和类声明很像。因此可以将 prompt 抽象为一个角色 (Role),包含名字,描述,技能,工作方法等描述,然后就得到了 LangGPT 的 Role 模板。
使用 Role 模板,只需要按照模板填写相应内容即可。除了变量和模板外,LangGPT 还提供了命令,记忆器,条件句等语法设置方法。