数据规整之数据连接pd.merge/数据合并data.join/数据连接pd.concat/数据重塑stack

数据合并(pd.merge)

  • 根据单个或多个键将不同DataFrame的行连接起来

  • 类似数据库的连接操作

  • pd.merge:(left, right, how='inner',on=None,left_on=None, right_on=None )

    left:合并时左边的DataFrame

    right:合并时右边的DataFrame

    how:合并的方式,默认'inner', 'outer', 'left', 'right'

  • alll=pd.merge(left,right,on='地区',how='left')#左连接----left对所有左表的键进行联合
    allr=pd.merge(left,right,on='地区',how='right')#右连接----right对所有右表的键进行联合
    alli=pd.merge(left,right,on='地区',how='inner')#内连接----inner:对两张表都有的键的交集进行联合
    allo=pd.merge(left,right,on='地区',how='outer')#全连接----outer:对两者表的都有的键的并集进行联合

  • on:需要合并的列名,必须两边都有的列名,并以 left 和 right 中的列名的交集作为连接键

  • left_on: left Dataframe中用作连接键的列

  • right_on: right Dataframe中用作连接键的列

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html官方文档
pd.merge(
    left,
    right,
    how="inner",
    on=None,
    left_on=None,
    right_on=None,
    left_index=False,
    right_index=False,
    sort=True,
    suffixes=("_x", "_y"),
    copy=True,
    indicator=False,
    validate=None,
)
  • left: A DataFrame or named Series object.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值